RESUMO.Este trabalho apresenta um procedimento de inversão magnética de três etapas no qual quantidades invariantes em relaçãoà fonte magnética são sequencialmente invertidas para recuperar i) a geometria da fonte no substrato, ii) sua intensidade de magnetização e iii) a inclinação da magnetização da fonte. A primeira quantidade invertida (chamada função geométrica)é obtida pela razão entre a intensidade do gradiente da anomalia magnética e a intensidade do campo magnético anômalo. Para fontes homogêneas, a função geométrica depende apenas da geometria da fonte, o que permite a reconstrução da forma do corpo usando valores arbitrários para a magnetização. Na segunda etapa, a forma da fonteé fixa e a intensidade de magnetizaçãoé estimada ajustando o módulo do gradiente da anomalia magnética, uma quantidade invariante com a direção da magnetização e equivalenteà amplitude do sinal analítico. Naúltima etapa, a forma da fonte e a intensidade da magnetização são fixas e a inclinação da magnetizaçãoé determinada ajustando a anomalia magnética. Além de recuperar a forma e a magnetização de fontes homogêneas, esta técnica permite, em alguns casos, verificar se as fontes magnéticas são homogêneas. Istoé possível pois a função geométrica de fontes heterogêneas pode ser ajustada por um modelo homogêneo, mas o modelo assim obtido não permite o ajuste da amplitude do sinal analítico nem da anomalia magnética. Esseé um critério que parece efetivo no reconhecimento de fontes fortemente heterogêneas. O método de inversão por etapasé testado em experimentos numéricos de computador e utilizado para interpretar uma anomalia magnética gerada por rochas básicas intrusivas da Bacia do Paraná.ABSTRACT. This work presents a three step magnetic inversion procedure in which invariant quantities related to source parameters are sequentially inverted to provide i) cross-section of two-dimensional sources; ii) intensity of source magnetization, and iii) inclination of source magnetization. The first inverted quantity (called geometrical function) is obtained by rationing intensity gradient of total field anomaly and intensity of vector anomalous field. For homogeneous sources, geometrical function depends only on source geometry thus allowing shape reconstruction by using arbitrary values for source magnetization. In the second step, source shape is fixed and magnetization intensity is estimated by fitting intensity gradient of total field anomaly, an invariant quantity with magnetization direction and equivalent to amplitude of the analytical signal. In the last step, source shape and magnetization intensity are fixed and magnetization inclination is determined by fitting magnetic anomaly. Besides furnishing shape and magnetization of homogeneous two-dimensional sources, this technique allows to check in some cases if causative sources are homogeneous. It is possible because geometrical function from inhomogeneous sources can be fitted by a homogeneous model but a model thus obtained does not fit the amplitude of analytical signal nor mag...
This work presents a three step magnetic inversion procedure in which invariant quantities related to source parameters are sequentially inverted to provide i) cross-section of two-dimensional sources; ii) intensity of source magnetization, and iii) inclination of source magnetization. The first inverted quantity (called geometrical function) is obtained by rationing intensity gradient of total field anomaly and intensity of vector anomalous field. For homogenous sources, geometrical function depends only on source geometry thus allowing shape reconstruction by using arbitrary values for source magnetization. In the second step, source shape is fixed and magnetization intensity is estimated by fitting intensity gradient of total field anomaly, an invariant quantity with magnetization direction and equivalent to amplitude of the analytical signal. In the last step, source shape and magnetization intensity are fixed and magnetization inclination is determined by fitting magnetic anomaly. Besides furnishing shape and magnetization of homogeneous two-dimensional sources, this technique allows to check in some cases if causative sources are homogeneous. It is possible because geometrical function from inhomogeneous sources can be fitted by a homogeneous model but a model thus obtained does not fit the amplitude of analytical signal nor magnetic anomaly itself. This is a criterion that seems effective in recognizing strongly inhomogeneous sources. The proposed technique is tested with numerical experiments, and used to model a magnetic anomaly from intrusive basic rocks of Paraná Basin, Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.