Purpose The rise of big data and analytics companies has significantly changed the business playground. Big data and the use of data analytics are being adopted more frequently, especially in companies that are looking for new methods to develop smarter capabilities and tackle challenges in the dynamic processes. Working with big data and applying a series of data analysis techniques require strong multidisciplinary skills and knowledge of statistics, econometrics, computer science, data mining, law and business ethics, etc. Higher education institutions (HEIs) are concerned by this phenomenon which is also changing learning needs and require a reorientation toward the development of novel approaches and advancements in their programs. The purpose of this paper is to introduce and define big data analytics as having an immense potential for generating value for businesses. In this context, one prominent strategy is to integrate big data analytics in educational programs to enrich student’ understanding of the role of big data, especially those who want to explore their entrepreneurial ways and improve their effectiveness. So, the main purpose of this article consists, on the one hand, in why HEIs must carefully think about how to provide powerful learning tools and open a new entrepreneurship area in this field, and, why, on the other hand, future entrepreneurs (students) have to use data analytics and how they can integrate, operationally, analytics methods to extract value and enhance their professional capabilities. Design/methodology/approach The author has established an expert viewpoint to discuss the notion of data analytics, identify new ways and re-think what really is new, for both entrepreneurs and HEIs, in the area of big data. This study provides insights into how students can improve their skills and develop new business models through the use of IT tools and by providing the ability to analyze data. This can be possible by bringing the tool of analytics into the higher educational learning system. New analytics methods have to help find new ways to process data and make more intelligent decisions. A brief overview of data analytics and its roles in the context of entrepreneurship and the rise of data entrepreneur is then presented. The paper also outlines the role of educational programs in helping address big data challenges and transform possibilities into opportunities. The key factors of implementing an efficient big data analytics in learning programs, to better orientate and guide students’ project idea, are also explored. The paper concludes with suggestions for further research and limitations of the study. Findings The findings in this paper suggest that analytics can be of crucial importance for student entrepreneurial practice if correctly aligned with their business processes and learning needs and can also lead to significant improvement in their performance and quality of the decisions they make. The added value of big data is the ability to identify useful data and turn it into usable information by identifying patterns and exploiting new algorithms, tools and new project solutions. So, the move toward the introduction of big data and analytics tools in higher education addresses how this new opportunity can be operationalized. Research limitations/implications There are some limitations to this research paper. The research findings have significant implications for HEIs in the field of analytics (mathematics and computer science), and thus, it is not generalizable with any further context. Also, the viewpoint is centered on the data analytics process as a value generator for entrepreneurial opportunities. Originality/value This research can be considered as a contribution with literature about educational quality, entrepreneurship and big data analytics. This study describes that new analytics thinking and computational skills are needed for the newer generation of entrepreneurs to handle the challenges of big data. But, preparing them to capture, analyze, store and manage the large amounts of data available today – so they can see value in data – is not just about implementing and using new technologies. This is also, about, a dynamic, operational and modern educational learning process from which a student can extract the maximum benefit. In another words: How to make new opportunities from these data? Which data to select for the analysis? and How to efficiently apply analytical techniques to generate value?
Purpose With the advent of the internet and communication technology, the penetration of e-learning has increased. The digital data being created by the educational and research institutions is also on the ascent. The growing interest in recent years toward big data, educational data mining and learning analytics has motivated the development of new analytical ways and approaches and advancements in learning settings. The need for using big data to handle, analyze this large amount of data is prime. This trend has started attracting the interest of educational institutions which have an important role in the development skills process and the preparation of a new generation of learners. “A real revolution for education,” it is based on this kind of terms that many articles have paid attention to big data for learning. How can analytics techniques and tools be so efficient and become a great prospect for the learning process? Big data analytics, when applied into teaching and learning processes, might help to improvise as well as to develop new paradigms. In this perspective, this paper aims to investigate the most promising applications and issues of big data for the design of the next-generation of massive e-learning. Specifically, it addresses the analytical tools and approaches for enhancing the future of e-learning, pitfalls arising from the usage of large data sets. Globally, this paper focuses on the possible application of big data techniques on learning developments, to show the power of analytics and why integrating big data is so important for the learning context. Design/methodology/approach Big data has in the recent years been an area of interest among innovative sectors and has become a major priority for many industries, and learning sector cannot escape to this deluge. This paper focuses on the different methods of big data able to be used in learning context to understand the benefits it can bring both to teaching and learning process, and identify its possible impact on the future of this sector in general. This paper investigates the connection between big data and the learning context. This connection can be illustrated by identifying the several main analytics approaches, methods and tools for improving the learning process. This can be clearer by the examination of the different ways and solutions that contribute to making a learning process more agile and dynamic. The methods that were used in this research are mainly of a descriptive and analytical nature, to establish how big data and analytics methods develop the learning process, and understand their contributions and impacts in addressing learning issues. To this end, authors have collected and reviewed existing literature related to big data in education and the technology application in the learning context. Authors then have done the same process with dynamic and operational examples of big data for learning. In this context, the authors noticed that there are jigsaw bits that contained important knowledge on the different parts of the research area. The process concludes by outlining the role and benefit of the related actors and highlighting the several directions relating to the development and implementation of an efficient learning process based on big data analytics. Findings Big data analytics, its techniques, tools and algorithms are important to improve the learning context. The findings in this paper suggest that the incorporation of an approach based on big data is of crucial importance. This approach can improve the learning process, for this, its implementation must be correctly aligned with educational strategies and learning needs. Research limitations/implications This research represents a reference to better understanding the influence and the role of big data in educational dynamic. In addition, it leads to improve existing literature about big data for learning. The limitations of the paper are given by its nature derived from a theoretical perspective, and the discussed ideas can be empirically validated by identifying how big data helps in addressing learning issues. Originality/value Over the time, the process that leads to the acquisition of the knowledge uses and receives more technological tools and components; this approach has contributed to the development of information communication and the interactive learning context. Technology applications continue to expand the boundaries of education into an “anytime/anywhere” experience. This technology and its wide use in the learning system produce a vast amount of different kinds of data. These data are still rarely exploited by educational practitioners. Its successful exploitation conducts educational actors to achieve their full potential in a complex and uncertain environment. The general motivation for this research is assisting higher educational institutions to better understand the impact of the big data as a success factor to develop their learning process and achieve their educational strategy and goals. This study contributes to better understand how big data analytics solutions are turned into operational actions and will be particularly valuable to improve learning in educational institutions.
This chapter treats the movement that marks, affects, and transforms any part of business and society. It is about big data that is creating, and the value generating that companies, startups, and entrepreneurs have to derive through sophisticated methods and advanced tools. This chapter suggests that analytics can be of crucial importance for business and entrepreneurial practices if correctly aligned with business process needs and can also lead to significant improvement of their performance and quality of the decisions they make. So, the main purpose of this chapter are exploring why small business, entrepreneur, and startups have to use data analytics and how they can integrate, operationally, analytics methods to extract value and create new opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.