Optical
imaging strategies for improving delineation of glioblastoma
(GBM) is highly desired for guiding surgeons to distinguish cancerous
tissue from healthy and precious brain tissue. Fluorescence imaging
(FLI) in the second near-infrared window (NIR-II) outperforms traditional
NIR-I imaging with better tissue penetration, higher spatial and temporal
resolution, and less auto fluorescence and scattering. Because of
high expression in GBM and many other tumors, urokinase Plasminogen
Activator Receptor (uPAR) is an attractive and well proven target
for FLI. Herein we aim to combine the benefit of a NIR-II fluorophore
with a high affinity uPAR targeting small peptide. A targeted NIR-II
fluorescent probe was developed by conjugating an in-house synthesized
NIR-II fluorophore, CH1055, and a uPAR targeting peptide, AE105. To
characterize the in vivo distribution and targeting
properties, a dynamic imaging was performed in orthotopic GBM bearing
nude mice (n = 8). Additionally, fluorescence guided
surgery of orthotopic GBM was performed in living animals. CH1055-4Glu-AE105
was easily synthesized with >75% yield and >98% HPLC evaluated
purity.
The retention time of the probe on analytical HPLC was 15.9 min and
the product was verified by mass spectrometry. Dynamic imaging demonstrated
that the uPAR targeting probe visualized orthotopic GBM through the
intact skull with a tumor-to-background ratio (TBR) of 2.7 peaking
at 96 h. Further, the orthotopic GBM was successfully resected in
small animals guided by the NIR-II FLI. By using a small uPAR targeting
NIR-II probe, FLI allows us to specifically image and detect GBM.
A real-time imaging setup further renders FLI guided tumor resection,
and the probe developed in this work is a promising candidate for
clinical translation.
Despite a weak, but significant, correlation between postoperative Hb and the recovery of 6MWT, all other mobility and Qol measures were not influenced by postoperative Hb. Thus, moderate postoperative anemia has limited impact on early postdischarge functional recovery after fast-track THA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.