Blockchain technology offers a sizable promise to rethink the way interorganizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this article, we outline the challenges and opportunities of blockchain for business process management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven research directions for investigating the application of blockchain technology in the context of BPM.
We investigate a graphical representation of session invocation interdependency in order to prove progress for the pi-calculus with sessions under the usual session typing discipline. We show that those processes whose associated dependency graph is acyclic can be brought to reduce. We call such processes transparent processes. Additionally, we prove that for well-typed processes where services contain no free names, such acyclicity is preserved by the reduction semantics. Our results encompass programs (processes containing neither free nor restricted session channels) and higher-order sessions (delegation). Furthermore, we give examples suggesting that transparent processes constitute a large enough class of processes with progress to have applications in modern session-based programming languages for web services
Abstract. As part of ongoing work on evaluating Milner's bigraphical reactive systems, we investigate bigraphical models of context-aware systems, a facet of ubiquitous computing. We find that naively encoding such systems in bigraphs is somewhat awkward; and we propose a more sophisticated modeling technique, introducing Plato-graphical models, alleviating this awkwardness. We argue that such models are useful for simulation and point out that for reasoning about such bigraphical models, the bisimilarity inherent to bigraphical reactive systems is not enough in itself; an equivalence between the bigraphical reactive systems themselves is also needed.
The General Data Protection Regulation (GDPR) has substantially strengthened the requirements for data processing systems, requiring audits at scale. We show how and to what extent these audits can be automated. We contribute an analysis of which parts of the GDPR can be monitored, a formalisation of these parts in metric first-order temporal logic, and an application of the MonPoly system to automatically audit these parts. We validate our ideas on a case study using log data from industry, detecting actual violations. Altogether, we demonstrate both in theory and practice how to automate GDPR compliance checking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.