Uveal melanoma (UM) continues to be associated with a high mortality rate of up to 50% due to metastatic spread primarily to the liver. Currently there are relatively effective treatments for the primary tumor, though the management of the metastatic disease remains inadequate. Conventional diagnostic tools have a low sensitivity for detecting metastasis, and early detection of metastatic spread would allow more treatment options that could ultimately increase survival of UM patients. Advanced proteomic methods have already helped to find potential biomarkers associated with UM pathogenesis and metastasis. In the present review we discuss the field of proteomics in relation to studies elucidating biomarkers of UM, where proteins such as S-100β, osteopontin (OPN), and melanoma inhibitory activity (MIA) have been shown to be associated with metastasis.
Background Doyne honeycomb retinal dystrophy (DHRD)/malattia leventinese (ML) is an autosomal dominant, progressive retinal disorder characterized by massive central retinal drusen often partly coalescent forming a characteristic honeycomb‐like pattern. Debut of vision loss often occurs in early to mid‐adulthood, and the degree varies. A single variant in EFEMP1: c.1033C>T (R345W) has been identified as the cause in all cases. Methods Following DNA isolation, exome sequencing was performed in seven genes associated with flecked retina. Direct sequencing was used for variant verification. Results We report the first Scandinavian case of molecular genetically verified DHRD/ML: a 57‐year‐old woman debuting with vision loss and metamorphopsia. On both eyes, ophthalmological findings included massive hard drusen in the macular region and nasal to the optic disc as well as macular hyperpigmentation. Secondary choroidal neovascularizations were identified on both eyes, and anti‐vascular endothelial growth factor was administered, without effect. Conclusion Molecular genetic investigation revealed heterozygosity for the known pathogenic missense variant in EFEMP1: c.1033C>T (R345W) previously reported in relation to DHRD/ML. Family history revealed no other cases of similar visual impairment suggesting a de novo mutation. Furthermore, there was no correlation between the unique DHRD/ML haplotypes reported in the literature and our patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.