We consider parameterized convex optimization problems over the unit simplex, that depend on one parameter. We provide a simple and efficient scheme for maintaining an ε-approximate solution (and a corresponding ε-coreset) along the entire parameter path. We prove correctness and optimality of the method. Practically relevant instances of the abstract parameterized optimization problem are for example regularization paths of support vector machines, multiple kernel learning, and minimum enclosing balls of moving points.
In the minimum-cost k-hop spanning tree (k-hop MST) problem, we are given a set S of n points in a metric space, a positive small integer k and a root point r ∈ S. We are interested in computing a rooted spanning tree of minimum cost such that the longest root-leaf path in the tree has at most k edges. We present a polynomial-time approximation scheme for the plane. Our algorithm is based on Arora's et al. [5] technique for the Euclidean k-median problem.
Generative network models play an important role in algorithm development, scaling studies, network analysis, and realistic system benchmarks for graph data sets. The commonly used graph-based benchmark model R-MAT has some drawbacks concerning realism and the scaling behavior of network properties. A complex network model gaining considerable popularity builds random hyperbolic graphs, generated by distributing points within a disk in the hyperbolic plane and then adding edges between points whose hyperbolic distance is below a threshold. We present in this paper a fast generation algorithm for such graphs. Our experiments show that our new generator achieves speedup factors of 3-60 over the best previous implementation. One billion edges can now be generated in under one minute on a shared-memory workstation. Furthermore, we present a dynamic extension to model gradual network change, while preserving at each step the point position probabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.