Soft hydrogels are extensively studied for developing human‐body‐mimicking actuators because of their stimuli‐responsive volume change and elasticity. Mimicking a human eye with hydrogels is very challenging because both the large variation in the volume and the high modulus of the gels should be concurrently achieved. In the human eye, adjusting the iris for controlling the focal point and light transmittance is achieved by the contraction of the sphincter muscle. In this work, a hyperelastic poly(N‐isopropylacrylamide) containing graphene oxide (PNIPAm/GO) composite hydrogels, which exhibits a thermo‐responsive volume phase transition is developed. The fact that the inner hole size for center‐cut hydrogels can increase or decrease during heating depending on the geometry of the hydrogels is revealed. Based on these findings, human‐iris‐like actuators capable of controlling the shape of a polydimethylsiloxane (PDMS) lens for adjusting magnification of an object is developed. When heated, the hyperelastic hydrogels act like the sphincter muscle in the eye, inducing the curvature change of the attached PDMS lens. Thus, hyperelastic hydrogels of large variation can provide an efficient platform to fabricate various soft actuation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.