In the case of adjustable drives systems with an induction motor (IM), a harmonic regime is manifested, whose knowledge and analysis are always necessary. However, most studies are focused on specific drive systems, the results of these works being valid only for drive systems of the same type. The objective of the present paper was to determine the harmonics consequences not only on the technical characteristics of the IM but also on the power supply as well as on the mechanical drive system. Thus, by initiating a methodology for estimating the consequences of each voltage harmonic separately, the aim was to substantiate a generally applicable method, which allows the evaluation, for any application, of the overall effects of the harmonics. The main feature of the method used in this paper was the consideration of the presence of voltage harmonics in the stator voltage of the IM, of certain frequencies and with certain levels, and the determination of all the electrical and mechanical consequences on the model of the drive system. It has been found that the harmonics of the IM affects the power quality (PQ) of the power supply, having significant influences also on the mechanical part of the drive system.
In a context with an increased level of competitiveness, companies are more and more interested in aspects concerning sustainable development. The implications of inadequate power quality (PQ) can determine important financial losses and influence companies' sustainable development through the generated effects. This article aims to facilitate the management of PQ by proposing a method for estimating the economic consequences of a poor PQ, with priority for the disturbances with significant economic effects. To determine the total cost for each type of PQ perturbation that may occur a classification of cost categories was made such as interruptions, process slowdowns, equipment failure, equipment downtime, reduced energy efficiency, lower product quality, lower labor productivity, and other indirect costs. Each PQ disturbance affects the final end-user differently. For calculating the total value for each type of PQ issues, different calculation formulas have been proposed so that each perturbation includes only those components associated with that perturbation. A case study was used to validate the proposed method. Also, the paper includes a technical and economic analysis of the possible compensation solutions for PQ disturbances that may affect the studied company. In conclusion, an understanding of PQ issues' consequences and an appropriate approach to PQ compensation solutions can be beneficial to any electrical power end-user.
The design methods of earthing from standards recommend the choice of electrode lengths and propose that the distances between electrodes to be 1-3 times larger than their length. The number of electrodes is determined from the condition of achieving the design earth resistance, while the design ends with the choice of one of the variants. This paper presents the methodology for calculating the earthing system with cylindrical, vertical electrodes arranged in a line. The main variables are the length and the number of earth electrodes, as well as the distance between adjacent ones. Firstly, a set of technologically advantageous values for the earth electrode length is established (e.g., 10 values). For each value of the electrode length and different numbers of electrodes (e.g., 11 values), the distance between adjacent electrodes is determined (e.g., for 110 cases), which leads to the design value resistance. Finally, optimal solutions are identified based on the five optimal applied criteria. The proposed optimal criteria for earthing design are the footprint area, the total earthing volume, the total dispersion surface, the total metal mass, and the investment costs. Comparing the optimal solutions with other technically possible solutions clearly highlights substantial savings concerning space, material, and cost.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.