Monoamine oxidases (MAO) with 2 isoforms, A and B, located at the outer mitochondrial membrane are flavoenzyme membranes with a major role in the metabolism of monoaminergic neurotransmitters and biogenic amines in the central nervous system and peripheral tissues, respectively. In the process of oxidative deamination, aldehydes, hydrogen peroxide, and ammonia are constantly generated as potential deleterious by-products. While being systematically studied for decades as sources of reactive oxygen species in brain diseases, compelling evidence nowadays supports the role of MAO-related oxidative stress in cardiovascular and metabolic pathologies. Indeed, oxidative stress and chronic inflammation are the most common pathomechanisms of the main noncommunicable diseases of our century. MAO inhibition with the new generation of reversible and selective drugs has recently emerged as a pharmacological strategy aimed at mitigating both processes. The aim of this minireview is to summarize available information regarding the contribution of MAO to the vascular oxidative stress and endothelial dysfunction in hypertension, metabolic disorders, and chronic kidney disease, all conditions associated with increased inflammatory burden.
Currently, wide world research is focused on sustainable development and the demand for innovative clean technologies, nevertheless natural potential reconsideration could represent a viable solution for the identification and design of new pharmacological agents from renewable resources. The main reason consists of special properties of these natural derivates: immunomodulating activity with continuously perfectible selectivity and efficiency. Plants and herb extracts have been used for centuries as traditional medicines, throughout the entire world. Romanian phytotherapy represents practically a very important part of our traditional knowledge and heritage. Therapeutic properties of plant active principles still continue to be the subject of many researches. In this chapter, an overview of plant bioactive molecules from the perspective of modern phytochemistry is presented. A special part is devoted to a very special medicinal plant, Viscum album, in particular identification of amino acids and thionins from mistletoe.
Background The purpose of the guideline was to achieve consensus in the care and treatment of patients with chronic venous disease, based on current evidence. Method A systematic literature search was performed in PubMed, Embase, Cinahl, and the Cochrane library up until 1 February 2019. Additional relevant literature were added through checking of references. Level of evidence was graded through the GRADE scale and recommendations were concluded. Results For the treatment of great and small saphenous vein reflux, endovenous ablation with laser or radiofrequency was recommended in preference to surgery or foam sclerotherapy. If tributaries are to be treated it should be done in the same procedure. Treatment with mecanicochemical ablation and glue can be used but we still need long term follow up results. Conclusion For the treatment of truncal varicosities, endovenous ablation with laser or radiofrequency combined with phlebectomies is recommended before surgery or foam.
Obesity is an age-independent, lifestyle-triggered, pandemic disease associated with both endothelial and visceral adipose tissue (VAT) dysfunction leading to cardiometabolic complications mediated via increased oxidative stress and persistent chronic inflammation. The purpose of the present study was to assess the oxidative stress in VAT and vascular samples and the effect of in vitro administration of vitamin D. VAT and mesenteric artery branches were harvested during abdominal surgery performed on patients referred for general surgery (n = 30) that were randomized into two subgroups: nonobese and obese. Serum levels of C-reactive protein (CRP) and vitamin D were measured. Tissue samples were treated or not with the active form of vitamin D: 1,25(OH)2D3 (100 nmol/L, 12 h). The main findings are that in obese patients, (i) a low vitamin D status was associated with increased inflammatory markers and reactive oxygen species generation in VAT and vascular samples and (ii) in vitro incubation with vitamin D alleviated oxidative stress in VAT and vascular preparations and also improved the vascular function. We report here that the serum level of vitamin D is inversely correlated with the magnitude of oxidative stress in the adipose tissue. Ex vivo treatment with active vitamin D mitigated obesity-related oxidative stress.
Obesity is an important preventable risk factor for morbidity and mortality from cardiometabolic disease. Oxidative stress (including in visceral adipose tissue) and chronic low-grade inflammation are the major underlying pathomechanisms. Monoamine oxidase (MAO) has recently emerged as an important source of cardiovascular oxidative stress. The present study was conducted to evaluate the role of MAO as contributor to reactive oxygen species (ROS) production in white adipose tissue and vessels harvested from patients undergoing elective abdominal surgery. To this aim, visceral adipose tissue and mesenteric artery branches were isolated from obese patients with chronic inflammation and used for organ bath, ROS production, quantitative real-time PCR, and immunohistology studies. The human visceral adipose tissue and mesenteric artery branches contain mainly the MAO-A isoform, as shown by the quantitative real-time PCR and immunohistology experiments. A significant upregulation of MAO-A, the impairment in vascular reactivity, and increase in ROS production were found in obese vs. non-obese patients. Incubation of the adipose tissue samples and vascular rings with the MAO-A inhibitor (clorgyline, 30 min) improved vascular reactivity and decreased ROS generation. In conclusion, MAO-A is the predominant isoform in human abdominal adipose and vascular tissues, is overexpressed in the setting of inflammation, and contributes to the endothelial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.