Background Heart failure (HF) with preserved ejection fraction (HFpEF) is a heterogeneous syndrome. Phenotyping patients into pathophysiologically homogenous groups may enable better targeting of treatment. Obesity is common in HFpEF and has many cardiovascular effects, suggesting it may be a viable candidate for phenotyping. We compared cardiovascular structure, function, and reserve capacity in subjects with obese HFpEF, non-obese HFpEF, and controls. Methods Subjects with obese HFpEF (BMI≥35kg/m2, n=99), non-obese HFpEF (BMI<30kg/m2, n=96), and non-obese controls free of HF (n=71) underwent detailed clinical assessment, echocardiography and invasive hemodynamic exercise testing. Results Compared to both non-obese HFpEF and controls, subjects with obese HFpEF displayed increased plasma volume (3907 [3563,4333] vs. 2772 [2555,3133] and 2680 [2380,3006] ml, p<0.0001), more concentric left ventricular remodeling, greater right ventricular dilatation (base 34±7 vs. 31±6 and 30±6 mm, p=0.0005; length 66±7 vs. 61±7 and 61±7 mm, p<0.0001), more right ventricular dysfunction, increased epicardial fat thickness (10±2 vs. 7±2 and 6±2 mm, p<0.0001), and greater total epicardial heart volume (945 [831,1105] vs. 797 [643,979] and 632 [517,768] ml, p<0.0001), despite lower NT-proBNP levels. Pulmonary capillary wedge pressure was correlated with body mass and plasma volume in obese HFpEF (r=0.22 and 0.27, both p<0.05), but not in non-obese HFpEF (p≥0.3). The increase in heart volumes in obese HFpEF was associated with greater pericardial restraint and heightened ventricular interdependence, reflected by increased ratio of right to left heart filling pressures (0.64±0.17 vs. 0.56±0.19 and 0.53±0.20, p=0.0004), higher pulmonary venous pressure relative to left ventricular transmural pressure, and greater left ventricular eccentricity index (1.10±0.19 vs 0.99±0.06 and 0.97±0.12, p<0.0001). Interdependence was enhanced as pulmonary artery pressure load increased (interaction p<0.05). As compared to non-obese HFpEF and controls, obese HFpEF subjects displayed worse exercise capacity (peak oxygen consumption 7.7±2.3 vs. 10.0±3.4 and12.9±4.0 ml/min*kg, p<0.0001), higher biventricular filling pressures with exercise and depressed pulmonary artery vasodilator reserve. Conclusions Obesity-related HFpEF is a genuine form of cardiac failure and a clinically relevant phenotype that may require specific treatments.
Isolated TR can be severe and is associated with excess mortality and morbidity, warranting heightened attention to diagnosis and quantitation. Quantitative assessment of TR, particularly ERO measurement, is a powerful independent predictor of outcome, superior to standard qualitative assessment.
Background-Endothelial progenitor cells (EPCs) promote neovascularization and endothelial repair. Renal artery stenosis (RAS) may impair renal function by inducing intrarenal microvascular injury and remodeling. We investigated whether replenishment with EPCs would protect the renal microcirculation in chronic experimental renovascular disease. Methods and Results-Single-kidney hemodynamics and function were assessed with the use of multidetector computed tomography in vivo in pigs with RAS, pigs with RAS 4 weeks after intrarenal infusion of autologous EPCs, and controls. Renal microvascular remodeling and angiogenic pathways were investigated ex vivo with the use of micro-computed tomography, histology, and Western blotting. EPCs increased renal expression of angiogenic factors, stimulated proliferation and maturation of new vessels, and attenuated renal microvascular remodeling and fibrosis in RAS. Furthermore, EPCs normalized the blunted renal microvascular and filtration function. Conclusions-The present study shows that a single intrarenal infusion of autologous EPCs preserved microvascular architecture and function and decreased microvascular remodeling in experimental chronic RAS. It is likely that restoration of the angiogenic cascade by autologous EPCs involved not only generation of new vessels but also acceleration of their maturation and stabilization. This contributed to preserving the blood supply, hemodynamics, and function of the RAS kidney, supporting EPCs as a promising therapeutic intervention for preserving the kidney in renovascular disease. (Circulation. 2009;119:547-557.)Key Words: blood flow Ⅲ kidney Ⅲ progenitor cells Ⅲ renal artery stenosis Ⅲ hypertension, renal E ndothelial progenitor cells (EPCs) mobilized endogenously in response to ischemia play a crucial role in augmenting neovascularization of ischemic tissues and endothelial replacement after vascular injury. Replenishment of such cells may limit vascular injury through reconstitution of the luminal barrier and cellular secretion of paracrine factors, providing a novel therapeutic option. 1,2 Indeed, growing experimental and clinical evidence underscores the critical role that circulating cells play in healing the endothelium when the intrinsic system is unable to adequately support tissue repair. Targeted delivery of EPCs has been shown to improve the function of the infarcted myocardium, 3 decrease hindlimb ischemia, 4,5 rescue the kidney from acute ischemia injury, 6 and participate in glomerular endothelial repair in glomerulonephritis. 7 Clinical Perspective p 557Ischemic nephropathy secondary to renal artery stenosis (RAS) represents an important cause of renovascular disease and hypertension that may induce renal injury and lead to end-stage renal disease. The presence of renovascular disease also constitutes an independent predictor for increased morbidity and mortality in cardiovascular disease and cardiac events. 8 We have shown previously that the kidney exposed to chronic RAS shows significant functional deteriorati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.