In his doctoral thesis, D. V. Ionescu has considered Darboux problem for partial differential equations of order two with modified argument. The Darboux-Ionescu problem was studied in some general cases by I. A. Rus. In this paper we study Ulam-Hyers stability and Ulam-Hyers-Rassias stability for this problem considered by I. A. Rus, using inequalities of Wendorff type.
The aim of this paper is to give some types of Ulam stability for a pseudoparabolic partial differential equation. In this case we consider Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability. We investigate some new applications of the Gronwall lemmas to the Ulam stability of a nonlinear pseudoparabolic partial differential equations.
In this paper, we establish some results for a Volterra–Hammerstein integral equation with modified arguments: existence and uniqueness, integral inequalities, monotony and Ulam-Hyers-Rassias stability. We emphasize that many problems from the domain of symmetry are modeled by differential and integral equations and those are approached in the stability point of view. In the literature, Fredholm, Volterra and Hammerstein integrals equations with symmetric kernels are studied. Our results can be applied as particular cases to these equations.
The aim of this paper is to investigate generalized Ulam–Hyers stability and generalized Ulam–Hyers–Rassias stability for a system of partial differential equations of first order. More precisely, we consider a system of two nonlinear equations of first order with an unknown function of two independent variables, which satisfy the corresponding compatibility condition. The study method is that of differential inequalities of the Gronwall type.
The goal of this paper is to give an Ulam-Hyers stability result for a parabolic partial differential equation. Here we present two types of Ulam stability: Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability. Some examples are given, one of them being the Black-Scholes equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.