Given a sextic CM field K, we give an explicit method for finding all genus-3 hyperelliptic curves defined over C whose Jacobians are simple and have complex multiplication by the maximal order of this field, via an approximation of their Rosenhain invariants. Building on the work of Weng [J. Ramanujan Math. Soc. 16 (2001) no. 4, 339-372], we give an algorithm which works in complete generality, for any CM sextic field K, and computes minimal polynomials of the Rosenhain invariants for any period matrix of the Jacobian. This algorithm can be used to generate genus-3 hyperelliptic curves over a finite field Fp with a given zeta function by finding roots of the Rosenhain minimal polynomials modulo p.
Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are ℓ-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trialand-error approach. In this paper, we propose an alternative method that efficiently finds all points P of order ℓ such that the subgroup generated by P is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing a new invariant of the endomorphism class of an elliptic curve. Our benchmarks show that the resulting algorithm for endomorphism ring computation is faster than Kohel's method for computing the ℓ-adic valuation of the conductor of the endomorphism ring for small ℓ.
Abstract. The Gallant-Lambert-Vanstone (GLV) algorithm uses efficiently computable endomorphisms to accelerate the computation of scalar multiplication of points on an abelian variety. Freeman and Satoh proposed for cryptographic use two families of genus 2 curves defined over Fp which have the property that the corresponding Jacobians are (2, 2)-isogenous over an extension field to a product of elliptic curves defined over F p 2 . We exploit the relationship between the endomorphism rings of isogenous abelian varieties to exhibit efficiently computable endomorphisms on both the genus 2 Jacobian and the elliptic curve. This leads to a four-dimensional GLV method on Freeman and Satoh's Jacobians and on two new families of elliptic curves defined over F p 2 .
Abstract. Scott uses an efficiently computable isomorphism in order to optimize pairing computation on a particular class of curves with embedding degree 2. He points out that pairing implementation becomes thus faster on these curves than on their supersingular equivalent, originally recommended by Boneh and Franklin for Identity Based Encryption. We extend Scott's method to other classes of curves with small embedding degree and efficiently computable endomorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.