Known genetic loci explain only a small proportion of the familial relative risk of colorectal cancer (CRC). We conducted the largest genome-wide association study in East Asians with 14,963 CRC cases and 31,945 controls and identified six new loci associated with CRC risk (P = 3.42 × 10−8 to 9.22 × 10−21) at 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3 and 19q13.2. Two of these loci map to genes (TCF7L2 and TGFB1) with established roles in colorectal tumorigenesis. Four other loci are located in or near genes involved in transcription regulation (ZMIZ1), genome maintenance (FEN1), fatty acid metabolism (FADS1 and FADS2), cancer cell motility and metastasis (CD9) and cell growth and differentiation (NXN). We also found suggestive evidence for three additional loci associated with CRC risk near genome-wide significance at 8q24.11, 10q21.1 and 10q24.2. Furthermore, we replicated 22 previously reported CRC loci. Our study provides insights into the genetic basis of CRC and suggests new biological pathways.
Background & Aims Known Genetic factors explain only a small fraction of genetic variation in colorectal cancer (CRC). We conducted a genome-wide association study (GWAS) to identify risk loci for CRC. Methods This discovery stage included 8027 cases and 22577 controls of East-Asian ancestry. Promising variants were evaluated in studies including as many as 11044 cases and 12047 controls. Tumor-adjacent normal tissues from 188 patients were analyzed to evaluate correlations of risk variants with expression levels of nearby genes. Potential functionality of risk variants were evaluated using public genomic and epigenomic databases. Results We identified 4 loci associated with CRC risk; P values for the most significant variant in each locus ranged from 3.92×10−8 to 1.24×10−12: 6p21.1 (rs4711689), 8q23.3 (rs2450115, rs6469656), 10q24.3 (rs4919687), and 12p13.3 (rs11064437). We also identified 2 risk variants at loci previously associated with CRC: 10q25.2 (rs10506868) and 20q13.3 (rs6061231). These risk variants, conferring an approximate 10%–18% increase in risk per allele, are located either inside or near protein-coding genes that include TFEB (lysosome biogenesis and autophagy), EIF3H (initiation of translation), CYP17A1 (steroidogenesis), SPSB2 (proteasome degradation), and RPS21 (ribosome biogenesis). Gene expression analyses showed a significant association (P <.05) for rs4711689 with TFEB, rs6469656 with EIF3H, rs11064437 with SPSB2, and rs6061231 with RPS21. Conclusions We identified susceptibility loci and genes associated with CRC risk, linking CRC predisposition to steroid hormone, protein synthesis and degradation, and autophagy pathways and providing added insight into the mechanism of CRC pathogenesis.
Sixty genetic loci associated with abdominal obesity, measured by waist circumference (WC) and waist-hip ratio (WHR), have been previously identified, primarily from studies conducted in European-ancestry populations. We conducted a meta-analysis of associations of abdominal obesity with approximately 2.5 million single nucleotide polymorphisms (SNPs) among 53,052 (for WC) and 48,312 (for WHR) individuals of Asian descent, and replicated 33 selected SNPs among 3,762 to 17,110 additional individuals. We identified four novel loci near the EFEMP1, ADAMTSL3 , CNPY2, and GNAS genes that were associated with WC after adjustment for body mass index (BMI); two loci near the NID2 and HLA-DRB5 genes associated with WHR after adjustment for BMI, and three loci near the CEP120, TSC22D2, and SLC22A2 genes associated with WC without adjustment for BMI. Functional enrichment analyses revealed enrichment of corticotropin-releasing hormone signaling, GNRH signaling, and/or CDK5 signaling pathways for those newly-identified loci. Our study provides additional insight on genetic contribution to abdominal obesity.
Fasting plasma glucose (FPG) has been recognized as an important indicator for the overall glycemic state preceding the onset of metabolic diseases. So far, most indentified genome-wide association loci for FPG were derived from populations with European ancestry, with a few exceptions. To extend a thorough catalog for FPG loci, we conducted meta-analyses of 13 genome-wide association studies in up to 24,740 nondiabetic subjects with East Asian ancestry. Follow-up replication analyses in up to an additional 21,345 participants identified three new FPG loci reaching genome-wide significance in or near PDK1-RAPGEF4, KANK1, and IGF1R. Our results could provide additional insight into the genetic variation implicated in fasting glucose regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.