The actual frequency of constitutively activating thyrotropin receptor or Gsalpha mutations in toxic thyroid nodules (TTNs) remains controversial as considerable variation in the prevalence of these mutations has been reported. We studied a series of 75 consecutive TTNs and performed mutation screening by the more sensitive method of denaturing gradient gel electrophoresis (DGGE) in addition to direct sequencing. Furthermore, the likelihood of somatic mutations occurring in genes other than that for the thyroid-stimulating hormone receptor (TSHR) and exons 7-9 of the Gsalpha protein gene was determined by clonality analysis of TTNs, which did not harbor mutations in the investigated genes. In 43 of 75 TTNs (57%) constitutively active TSHR mutations were identified. Six TSHR mutations were detected only by DGGE, underlining the importance of a sensitive screening method. Novel, constitutively activating mutations were identified at positions 425 (Ser-->Leu) and 512 (Leu-->Glu/Arg). Furthermore, a new base substitution was detected at position Pro639Ala (CCA-->GCA). Ten of 20 TSHR or Gsalpha mutation negative cases (50%) showed nonrandom X-chromosome inactivation, indicating clonal origin. In conclusion, somatic, constitutively activating TSHR mutations appear to be a major cause of TTNs (57%), while mutations in Gsalpha play a minor role (3%). The mutation negative but clonal cases indicate a probable involvement of somatic mutations other than in the TSH receptor or Gsalpha genes as the molecular cause of these hot nodules.
The interaction of the rubella virus (RV) capsid (C) protein and the mitochondrial p32 protein is believed to participate in virus replication. In this study, the physiological significance of the association of RV with mitochondria was investigated by silencing p32 through RNA interference. It was demonstrated that downregulation of p32 interferes with microtubule-directed redistribution of mitochondria in RV-infected cells. However, the association of the viral C protein with mitochondria was not affected. When cell lines either pretreated with respiratory chain inhibitors or cultivated under (mild) hypoxic conditions were infected with RV, viral replication was reduced in a time-dependent fashion. Additionally, RV infection induces increased activity of mitochondrial electron transport chain complex III, which was associated with an increase in the mitochondrial membrane potential. These effects are outstanding among the examples of mitochondrial alterations caused by viruses. In contrast to the preferential localization of p32 to the mitochondrial matrix in most cell lines, RV-permissive cell lines were characterized by an almost exclusive membrane association of p32. Conceivably, this contributes to p32 function(s) during RV replication. The data presented suggest that p32 fulfills an essential function for RV replication in directing trafficking of mitochondria near sites of viral replication to meet the energy demands of the virus.Rubella virus (RV), a single-stranded RNA virus, is the sole member of the genus Rubivirus in the family Togaviridae and causes a generally mild exanthematous childhood disease. However, severe malformations known as congenital rubella syndrome may result from the infection of seronegative women, especially during the first trimester of pregnancy. The mechanisms contributing to RV teratogenesis remain largely unknown. The 5Ј-proximal open reading frame (ORF) of the genome encodes the two replicase proteins P150 and P90, while the 3Ј ORF encodes the structural proteins, the capsid (C) protein and two envelope glycoproteins (E1 and E2). Viral RNA synthesis occurs on replication complexes, which are membrane bound to a structure called the cytopathic vacuole (CPV). CPVs are of endolysosomal origin and surrounded by rough endoplasmic reticulum (RER) cisternae, the Golgi apparatus, and mitochondria (13,14). CPVs are replication factories and provide a protected environment for virus replication and assembly.The C protein of RV represents one of the few RNA virusencoded structural proteins that interact with mitochondria and is so far the only known viral protein that impairs protein transport into mitochondria (17). Additionally, the C protein participates in viral RNA synthesis (42), which is emphasized by its accumulation around CPVs (14). The C protein is also involved in the process of mitochondrial redistribution to a perinuclear region in proximity to CPVs (3,28) and interacts with the p32 protein (3). Besides its predominant localization to the matrix of mitochondria, p32 is a...
bMitochondria are important for the viral life cycle, mainly by providing the energy required for viral replication and assembly. A highly complex interaction with mitochondria is exerted by rubella virus (RV), which includes an increase in the mitochondrial membrane potential as a general marker for mitochondrial activity. We aimed in this study to provide a more comprehensive picture of the activity of mitochondrial respiratory chain complexes I to IV. Their activities were compared among three different cell lines. A strong and significant increase in the activity of mitochondrial respiratory enzyme succinate:ubiquinone oxidoreductase (complex II) and a moderate increase of ubiquinol:cytochrome c oxidoreductase (complex III) were detected in all cell lines. In contrast, the activity of mitochondrial respiratory enzyme cytochrome c oxidase (complex IV) was significantly decreased. The effects on mitochondrial functions appear to be RV specific, as they were absent in control infections with measles virus. Additionally, these alterations of the respiratory chain activity were not associated with an elevated transcription of oxidative stress proteins, and reactive oxygen species (ROS) were induced only marginally. Moreover, protein and/or mRNA levels of markers for mitochondrial biogenesis and structure were elevated, such as nuclear respiratory factors (NRFs) and mitofusin 2 (Mfn2). Together, these results establish a novel view on the regulation of mitochondrial functions by viruses. Mitochondria are required for the maintenance of cell function and integrity. Their most important role lies in energy production, but they are also at the intersection of regulatory pathways that coordinate metabolic processes (e.g., calcium homeostasis and cellular proliferation), cellular fate (apoptosis and necrosis), and antiviral defense (1, 2). Even a participation of mitochondria in the innate immune response was identified (2). There are a number of viruses that interfere with the important role of mitochondria in cellular antiviral response pathways, mainly with the regulation of apoptosis (1). Additionally, as the powerhouses of the cell, mitochondria provide most of the energy for viral replication and assembly. Up to 90% of the cellular ATP is produced in the inner mitochondrial membrane (IMM) by oxidative phosphorylation (OXPHOS), (3). OXPHOS comprises a series of redox reactions carried out by four multisubunit enzyme complexes (complexes I to IV) of the electron transport chain (ETC). Electrons are transferred in a stepwise manner through this series of electron carriers from NADH (and FADH 2 ) as reducing equivalents to the final acceptor molecular oxygen. A small percentage of electrons that are transported through the respiratory complexes leaks out, which results in generation of reactive oxygen species (ROS). The main ROS species is hydrogen peroxide, which is converted to water by enzymes such as catalase, peroxiredoxin, or glutathione peroxidase as components of the cellular antioxidant system. Respiratory c...
A specific H-bonding network formed between the central regions of transmembrane domain 6 and transmembrane domain 7 has been proposed to be critical for stabilizing the inactive state of glycoprotein hormone receptors. Many different constitutively activating TSH receptor point mutations have been identified in hyperfunctioning thyroid adenomas in the lower portion of transmembrane domain 6. Position D633 in transmembrane domain 6 of the human TSH receptor is the only one in which four different constitutively activating amino acid exchanges have been identified. Further in vitro substitutions led to constitutive activation of the TSH receptor (D633Y, F, C) as well as to the first inactivating TSH receptor mutation in transmembrane domain 6 without changes of membrane expression or TSH binding (D633R). Molecular modeling of this inactivating TSH receptor mutation revealed potential interaction partners of R633 in transmembrane domain 3 and/or transmembrane domain 7, presumably via hydrogen bonds that could be responsible for locking the TSH receptor in a completely inactive state. To further elucidate the H-bond network that most likely maintains the inactive state of the TSH receptor, we investigated these potential interactions by generating TSH receptor double mutants designed to break up possible H bonds. We excluded S508 in transmembrane domain 3 as a possible interaction partner of R633. In contrast, a partial response to TSH stimulation was rescued in a receptor construct with the double-substitution D633R/N674D. Our results therefore confirm the H bond between position 633 in transmembrane domain 6 and 674 in transmembrane domain 7 suggested by molecular modeling of the inactivating mutation D633R. Moreover, the mutagenesis results, together with a three-dimensional structure model, indicate that for TSH receptor activation and G protein-coupled signaling, at least one free available carboxylate oxygen is required as a hydrogen acceptor atom at position 674 in transmembrane domain 7.
The uniform basal cAMP values in spite of the large variation in specific constitutive activity values suggest that the COS-7 cell overexpression system used for the in vitro characterization is partly regulated. This regulation is most likely due to receptor down regulation. The TSHR deletion mutant (613-621) showed a constitutive activity for both the Galphas and the Galphaq/11 pathways. The TSH-mediated IP-stimulation by this mutant contrasts with its unresponsiveness to TSH for cAMP accumulation and therefore supports the model of different active conformations of the TSHR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.