In this book chapter, a system identification method for modeling nonlinear behavior of smart buildings is discussed that has a significantly low computation time. To reduce the size of the training data used for the adaptive neuro-fuzzy inference system (ANFIS), principal component analysis (PCA) is used, i.e., PCA-based adaptive neuro-fuzzy inference system: PANFIS. The PANFIS model is evaluated on a seismically excited three-story building equipped with a magnetorheological (MR) damper. The PANFIS model is trained using an artificial earthquake that contains a variety of characteristics of earthquakes. The trained PANFIS model is tested using four different earthquakes. It was demonstrated that the proposed PANFIS model is effective in modeling nonlinear behavior of a smart building with significant reduction in computational loads.
In this book chapter, a system identification method for modeling nonlinear behavior of smart buildings is discussed that has a significantly low computation time. To reduce the size of the training data used for the adaptive neuro-fuzzy inference system (ANFIS), principal component analysis (PCA) is used, i.e., PCA-based adaptive neuro-fuzzy inference system: PANFIS. The PANFIS model is evaluated on a seismically excited three-story building equipped with a magnetorheological (MR) damper. The PANFIS model is trained using an artificial earthquake that contains a variety of characteristics of earthquakes. The trained PANFIS model is tested using four different earthquakes. It was demonstrated that the proposed PANFIS model is effective in modeling nonlinear behavior of a smart building with significant reduction in computational loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.