Cowpea, Vigna unguiculata (L.), is an important grain legume grown in the tropics where it constitutes a valuable source of protein in the diets of millions of people. Some abiotic and biotic stresses adversely affect its productivity. A review of the genetics, genomics and breeding of cowpea is presented in this article. Cowpea breeding programmes have studied intensively qualitative and quantitative genetics of the crop to better enhance its improvement. A number of initiatives including Tropical Legumes projects have contributed to the development of cowpea genomic resources. Recent progress in the development of consensus genetic map containing 37,372 SNPs mapped to 3,280 bins will strengthen cowpea trait discovery pipeline. Several informative markers associated with quantitative trait loci (QTL) related to desirable attributes of cowpea were generated. Cowpea genetic improvement activities aim at the development of drought tolerant, phosphorus use efficient, bacterial blight and virus resistant lines through exploiting available genetic resources as well as deployment of modern breeding tools that will enhance genetic gain when grown by sub-Saharan Africa farmers.
Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP‐GL). Through these initiatives, genomic resources and genomic tools such as draft genome sequence, resequencing data, large‐scale genomewide markers, dense genetic maps, quantitative trait loci (QTLs) and diagnostic markers have been developed for further use in multiple genetic and breeding applications. Also, these mega‐initiatives facilitated release of a number of new varieties and also dissemination of on‐the‐shelf varieties to the farmers. More efforts are needed to enhance genetic gains by reducing the time required in cultivar development through integration of genomics‐assisted breeding approaches and rapid generation advancement.
There are several hurdles to ensure sustainable seed production and consistent flow of improved legume varieties in sub‐Saharan Africa (SSA) and South Asia (SA). The unreliable demand, autogamous nature of most of the grain legumes, and slow variety replacement rate by smallholder farmers do not provide strong incentive for private seed companies to invest in legume seed business. Unless a well thought‐out and comprehensive approach to legume seed delivery is developed, current seed shortages will continue, eroding emerging market opportunities. The experiences reported here are collated through a 10‐year partnership project, the Tropical Legumes in SSA and SA. It fostered innovative public–private partnerships in joint testing of innovative market‐led seed systems, skills and knowledge enhancement, de‐risking private sector initiatives that introduced in new approaches and previously overlooked entities in technology delivery. As new public and private seed companies, individual seed entrepreneurs and farmer organizations emerged, the existing ones enhanced their capacities. This resulted in significant rise in production, availability and accessibility of various seed grades of newly improved and farmer demanded legume varieties in the target countries.
Broad bean mottle virus (BBMV) was u'ansmitted from infected to healthy faha-bean plants by the curculionid weevils Apion radiolus Kirby, Hypera variabilis Herbst, Pachytychius strumarius Gyll, Smicronyx cyaneus Gyll, and Sitona lineatus L. The latter appeared to be an efficient vector: acquisition and inoculation occurred at the first bite, the rate of transmission was c. 41%, and virus retention lasted for at least seven days. S. lineatus transmitted the virus from faba bean to lentil and pea, but not to the three genotypes of chickpea tested. This is the first report on the genera Hypera, Pachytychius, and Smicronyx as virus vectors, and on A. radiolus, H. variabilis, P. strumarius, and S. cyaneus as vectors of BBMV.Out of 351 samples of food legumes with symptoms suggestive of virus infection, 16, 1 l, 19, and 17% of the samples of chickpea, lentil, pea, and common bean, respectively, were found infected when tested for BBMV in DAS-ELISA. This is the first report on the natural occurrence of BBMV in chickpea, lentil, pea, and common bean. The virus should be regarded as a food-legume virus rather than a faba-bean virus solely, and is considered an actual threat to food legume improvement programmes.
Cereal-cowpea intercropping has become an integral part of the farming system in Mali. Still, information is lacking regarding integrated benefits of the whole system, including valuing of the biomass for facing the constraints of animal feedings. We used farmers’ learning networks to evaluate performance of intercropping systems of millet-cowpea and sorghum-cowpea in southern Mali. Our results showed that under intercropping, the grain yield obtained with the wilibali (short maturing duration) variety was significantly higher than the yield obtained with the sangaranka (long maturing duration) variety whether with millet (36%) or sorghum (48%), corresponding, respectively, to an economic gain of XOF (West African CFA franc) 125 282/ha and XOF 142 640/ha. While for biomass, the yield obtained with the sangaranka variety was significantly higher by 50% and 60% to that of wilibali with an economic gain of XOF 286 526/ha (with millet) and XOF 278 516/ha (with sorghum). Total gain obtained with the millet-cowpea system was significantly greater than that obtained with the sorghum-cowpea system by 14%, and this stands irrespective of the type of cowpea variety. Farmers prefer the grain for satisfying immediate food needs instead of economic gains. These results represent an indication for farmer’s decision-making regarding cowpea varieties selection especially for addressing household food security issues or feeding animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.