Solar flares are often accompanied by filament/prominence eruptions (~104 K and ~1010−11 cm−3), sometimes leading to coronal mass ejections that directly affect the Earth’s environment1,2. ‘Superflares’ are found on some active solar-type (G-type main-sequence) stars3–5, but the filament eruption–coronal mass ejection association has not been established. Here we show that our optical spectroscopic observation of the young solar-type star EK Draconis reveals evidence for a stellar filament eruption associated with a superflare. This superflare emitted a radiated energy of 2.0 × 1033 erg, and a blueshifted hydrogen absorption component with a high velocity of −510 km s−1 was observed shortly afterwards. The temporal changes in the spectra strongly resemble those of solar filament eruptions. Comparing this eruption with solar filament eruptions in terms of the length scale and velocity strongly suggests that a stellar coronal mass ejection occurred. The erupted filament mass of 1.1 × 1018 g is ten times larger than those of the largest solar coronal mass ejections. The massive filament eruption and an associated coronal mass ejection provide the opportunity to evaluate how they affect the environment of young exoplanets/the young Earth6 and stellar mass/angular momentum evolution7.
We report the latest statistical analyses of superflares on solar-type (G-type main-sequence; effective temperature is 5100–6000 K) stars using all of the Kepler primary mission data and Gaia Data Release 2 catalog. We updated the flare detection method from our previous studies by using a high-pass filter to remove rotational variations caused by starspots. We also examined the sample biases on the frequency of superflares, taking into account gyrochronology and flare detection completeness. The sample sizes of solar-type and Sun-like stars (effective temperature is 5600–6000 K and rotation period is over 20 days in solar-type stars) are ∼4 and ∼12 times, respectively, compared with Notsu et al. As a result, we found 2341 superflares on 265 solar-type stars and 26 superflares on 15 Sun-like stars; the former increased from 527 to 2341 and the latter from three to 26 events compared with our previous study. This enabled us to have a more well-established view on the statistical properties of superflares. The observed upper limit of the flare energy decreases as the rotation period increases in solar-type stars. The frequency of superflares decreases as the stellar rotation period increases. The maximum energy we found on Sun-like stars is 4 × 1034 erg. Our analysis of Sun-like stars suggests that the Sun can cause superflares with energies of ∼7 × 1033 erg (∼X700-class flares) and ∼1 × 1034 erg (∼X1000-class flares) once every ∼3000 and ∼6000 yr, respectively.
In this paper, we present the results from spectroscopic and photometric observations of the M-type flare star YZ CMi in the framework of the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) collaborations during the Transiting Exoplanet Survey Satellite (TESS) observation period. We detected 145 white-light flares from the TESS light-curve and four Hα flares from the OISTER observations performed between 2019 January 16 and 18. Among them, three Hα flares were associated with white-light flares. However, one of them did not show clear brightening in the continuum; during this flare, the Hα line exhibited blue asymmetry which lasted for ∼60 min. The line-of-sight velocity of the blueshifted component is in the range from −80 to −100 km s−1. This suggests that there can be upward flows of chromospheric cool plasma even without detectable red/near-infrared (NIR) continuum brightening. By assuming that the blue asymmetry in the Hα line was caused by a prominence eruption on YZ CMi, we estimated the mass and kinetic energy of the upward-moving material to be 1016–1018 g and 1029.5–1031.5 erg, respectively. The estimated mass is comparable to expectations from the empirical relation between the flare X-ray energy and mass of upward-moving material for stellar flares and solar coronal mass ejections (CMEs). In contrast, the estimated kinetic energy for the non-white-light flare on YZ CMi is roughly two orders of magnitude smaller than that expected from the relation between flare X-ray energy and kinetic energy for solar CMEs. This could be understood by the difference in the velocity between CMEs and prominence eruptions.
Young solar-type stars are known to show frequent “superflares,” which may severely influence the habitable worlds on young planets via intense radiation and coronal mass ejections. Here we report an optical spectroscopic and photometric observation of a long-duration superflare on the young solar-type star EK Draconis (50–120 Myr age) with the Seimei telescope and Transiting Exoplanet Survey Satellite. The flare energy 2.6 × 1034 erg and white-light flare duration 2.2 hr are much larger than those of the largest solar flares, and this is the largest superflare on a solar-type star ever detected by optical spectroscopy. The Hα emission profile shows no significant line asymmetry, meaning no signature of a filament eruption, unlike the only previous detection of a superflare on this star. Also, it did not show significant line broadening, indicating that the nonthermal heating at the flare footpoints is not essential or that the footpoints are behind the limb. The time evolution and duration of the Hα flare are surprisingly almost the same as those of the white-light flare, which is different from general M-dwarf (super-)flares and solar flares. This unexpected time evolution may suggest that different radiation mechanisms than general solar flares are predominant, such as: (1) radiation from (off-limb) flare loops and (2) re-radiation via radiative back-warming, in both of which the cooling timescales of flare loops could determine the timescales of Hα and white light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.