Unsupervised cross-lingual word embedding (CLWE) methods learn a linear transformation matrix that maps two monolingual embedding spaces that are separately trained with monolingual corpora. This method relies on the assumption that the two embedding spaces are structurally similar, which does not necessarily hold true in general. In this paper, we argue that using a pseudo-parallel corpus generated by an unsupervised machine translation model facilitates the structural similarity of the two embedding spaces and improves the quality of CLWEs in the unsupervised mapping method. We show that our approach outperforms other alternative approaches given the same amount of data, and, through detailed analysis, we show that data augmentation with the pseudo data from unsupervised machine translation is especially effective for mappingbased CLWEs because (1) the pseudo data makes the source and target corpora (partially) parallel; (2) the pseudo data contains information on the original language that helps to learn similar embedding spaces between the source and target languages.
We present EASE, a novel method for learning sentence embeddings via contrastive learning between sentences and their related entities. The advantage of using entity supervision is twofold: (1) entities have been shown to be a strong indicator of text semantics and thus should provide rich training signals for sentence embeddings; (2) entities are defined independently of languages and thus offer useful cross-lingual alignment supervision. We evaluate EASE against other unsupervised models both in monolingual and multilingual settings. We show that EASE exhibits competitive or better performance in English semantic textual similarity (STS) and short text clustering (STC) tasks and it significantly outperforms baseline methods in multilingual settings on a variety of tasks. Our source code, pretrained models, and newly constructed multilingual STC dataset are available at https: //github.com/studio-ousia/ease.
Deep neural networks are vulnerable to adversarial examples (AEs), which have adversarial transferability: AEs generated for the source model can mislead another (target) model's predictions. However, the transferability has not been understood from the perspective of to which class target model's predictions were misled (i.e., class-aware transferability). In this paper, we differentiate the cases in which a target model predicts the same wrong class as the source model ("same mistake") or a different wrong class ("different mistake") to analyze and provide an explanation of the mechanism. First, our analysis shows (1) that same mistakes correlate with "non-targeted transferability" and ( 2) that different mistakes occur between similar models regardless of the perturbation size. Second, we present evidence that the difference in same and different mistakes can be explained by non-robust features, predictive but humanuninterpretable patterns: different mistakes occur when non-robust features in AEs are used differently by models. Non-robust features can thus provide consistent explanations for the class-aware transferability of AEs.
We present EASE, a novel method for learning sentence embeddings via contrastive learning between sentences and their related entities. The advantage of using entity supervision is twofold: (1) entities have been shown to be a strong indicator of text semantics and thus should provide rich training signals for sentence embeddings; (2) entities are defined independently of languages and thus offer useful cross-lingual alignment supervision. We evaluate EASE against other unsupervised models both in monolingual and multilingual settings. We show that EASE exhibits competitive or better performance in English semantic textual similarity (STS) and short text clustering (STC) tasks and it significantly outperforms baseline methods in multilingual settings on a variety of tasks. Our source code, pretrained models, and newly constructed multilingual STC dataset are available at https: //github.com/studio-ousia/ease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.