Struvite (MgNH₄PO₄·6H₂O) is normally used as a fertilizer in agriculture, where struvite crystallization from hydrolysed human urine is a simple and reliable method for phosphorus (P) recovery. Human urine, however, contains high amount of pharmaceuticals, which may cause health risk for applications. This research investigates the possibility of decreasing the amount of pharmaceuticals (tetracycline, demeclocycline and oxytetracycline) in struvite crystals recovered from synthetic and human urines by focusing on storage time, and of increasing the quality of struvite production. Urines were stored for different times up to 15 days prior to recovery of phosphorus by two steps, spontaneous precipitation and struvite crystallization. The morphology of spontaneous precipitates and struvite crystals was observed. Spontaneous precipitation removed around 17-24% of phosphate from synthetic and human urines, while pharmaceuticals were removed with a quite high amount at a short storage time (5 days) and this amount decreased with increasing the storage time (10 and 15 days). Urines with>70% remaining phosphates were re-used for struvite crystallization by adding extra magnesium. It was found that maximum P-recovery efficiency could be achieved from struvite crystallization at 5-day storage time, 70% and 68% of remaining P in the separated supernatant from synthetic and human urines, respectively, whereas less than 1% pharmaceuticals remained in the struvite crystals from both samples. This indicates that the procedure in this work is a good method for phosphorus recovery, in which high struvite purity (>99%) is obtained with low amount of pharmaceuticals.
Phosphorus (P) recovery was carried out through struvite precipitation from urines. Human urine, however, contains not only high nutrients for plants, such as P and nitrogen, but also pharmaceuticals and hormones. In this work, effects of magnesium (Mg) dose (in terms of Mg:P ratio) on P recovery efficiency and pharmaceutical amounts contained in struvite were investigated. Batch-scale experiments of synthetic and human urines revealed that struvite precipitation formed more X-shaped crystals with an increased molar ratio of Mg:P, while the amount of pharmaceuticals (tetracycline, demeclocycline, and oxytetracycline) in struvite decreased with an increased molar ratio of Mg:P. The lowest pharmaceutical amounts in struvite were found at the Mg:P ratio of 2:1 from both samples. Moreover, the maximum P recovery efficiency, quantity and purity of struvite were found in the range of 1.21 to 2:1. It indicated that the molar ratio of Mg:P has a significant impact on struvite precipitation in terms of pharmaceutical amounts in struvite; morphology, quantity and purity of struvite; and P recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.