SummaryObjectiveVitamin B6–dependent epilepsies are treatable disorders caused by variants in several genes, such as ALDH7A1,PNPO, and others. Recently, biallelic variants in PLPBP, formerly known as PROSC, were identified as a novel cause of vitamin B6–dependent epilepsies. Our objective was to further delineate the phenotype of PLPBP mutation.MethodsWe identified 4 unrelated patients harboring a total of 4 variants in PLPBP, including 3 novel variants, in a cohort of 700 patients with developmental and epileptic encephalopathies. Clinical information in each case was collected.ResultsEach patient had a different clinical course of epilepsy, with seizure onset from the first day of life to 3 months of age. Generalized tonic–clonic seizures were commonly noted. Myoclonic seizures or focal seizures were also observed in 2 patients. Interictal electroencephalography showed variable findings, such as suppression burst, focal or multifocal discharges, and diffuse slow activity. Unlike previous reports, all the patients had some degree of intellectual disability, although some of them had received early treatment with vitamin B6, suggesting that different mutation types influence the severity and outcome of the seizures.Significance
PLPBP variants should be regarded as among the causative genes of developmental and epileptic encephalopathy, even when it occurs after the neonatal period. Early diagnosis and proper treatment with pyridoxine or pyridoxal phosphate is essential to improve the neurologic prognosis in neonates or young children with poorly controlled seizures.
BCL11A encodes a zinc finger protein that is highly expressed in hematopoietic tissues and the brain, and that is known to function as a transcriptional repressor of fetal hemoglobin (HbF). Recently, de novo variants in BCL11A have been reported in individuals with intellectual disability syndrome without epilepsy. In this study, we performed whole-exome sequencing of 302 patients with epileptic encephalopathies (EEs), and identified 2 novel BCL11A variants, c.577delC (p.His193Metfs*3) and c.2351A>C (p.Lys784Thr). Both the patients shared major physical features characteristic of BCL11A-related intellectual disability syndrome, suggesting that characteristic physical features and the persistence of HbF should lead clinicians to suspect EEs caused by BCL11A pathogenic variants. Patient 1, with a frameshift variant, presented with Lennox-Gastaut syndrome, which expands the phenotypic spectrum of BCL11A haploinsufficiency. Patient 2, with a p.Lys784Thr variant, presented with West syndrome followed by drug-resistant focal seizures and more severe developmental disability. These 2 newly described patients contribute to delineating the associated, yet uncertain phenotypic characteristics of BCL11A disease-causing variants.
We aimed to analyse the ictal electrographic changes on scalp electroencephalography (EEG), focusing on high-voltage slow waves (HVSs) in children with epileptic spasms (ES) and tonic spasms (TS) and then identified factors associated with corpus callosotomy (CC) outcomes. We enrolled 17 patients with ES/TS who underwent CC before 20 years of age. Post-CC Engel’s classification was as follows: I in 7 patients, II in 2, III in 4, and IV in 4. Welch’s t-test was used to analyse the correlation between ictal HVSs and CC outcomes based on the following three symmetrical indices: (1) negative peak delay: interhemispheric delay between negative peaks; (2) amplitude ratio: interhemispheric ratio of amplitude values for the highest positive peaks; and (3) duration ratio: interhemispheric ratio of slow wave duration. Ages at CC ranged from 17–237 months. Four to 15 ictal EEGs were analysed for each patient. The negative peak delay, amplitude ratio and duration ratio ranged from 0–530 ms, 1.00–7.40 and 1.00–2.74, respectively. The negative peak delay, amplitude ratio and duration ratio were significantly higher in the seizure residual group (p = 0.017, <0.001, <0.001, respectively). Symmetry of ictal HVSs may predict favourable outcomes following CC for ES/TS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.