Programmed cell death-1 (PD-1) is an inhibitory coreceptor for T lymphocytes that provides feedback inhibition of T cell activation. Although PD-1’s expression on T cells is known to be activation dependent, the factors that determine the timing, intensity, and duration of PD-1 expression in immune reactions are not fully understood. To address this question, we performed a fine mapping analysis of a conserved 5′-flanking region of the PD-1 gene and identified a putative IFN stimulation response element, which was responsible for PD-1 transcription in the 2B4.11 T cell line. Consistent with this finding, activation by IFN-α enhanced both the induction and maintenance of PD-1 expression on TCR-engaged primary mouse T cells through an association IFN-responsive factor 9 (IRF9) to the IFN stimulation response element. Furthermore, PD-1 expression on Ag-specific CD8+ T cells was augmented by IFN-α in vivo. We propose that strong innate inflammatory responses promote primary T cell activation and their differentiation into effector cells, but also cause an attenuated T cell response in sustained immune reactions, at least partially through type I IFN-mediated PD-1 transcription. Based on this idea, we demonstrate that IFN-α administration in combination with PD-1 blockade in tumor-bearing mice effectively augments the antitumor immunity, and we propose this as a novel and rational approach for cancer immunotherapy.
Accumulating evidence suggests that PD-1, an immuno-inhibitory receptor expressed on activated T cells, regulates peripheral T cell tolerance. In particular, PD-1 is involved in the induction and/or maintenance of T cells’ intrinsic unresponsiveness to previously encountered Ags, although the mechanism is yet to be determined. We used a simple experimental model to dissect the mechanism for anergy establishment, in which 2C TCR transgenic rag2−/− PD-1+/+ mice were anergized by a single injection of a cognate peptide. Interestingly, 2C rag2−/− PD-1−/− mice were totally resistant to anergy induction by the same treatment; thus, PD-1 was responsible for anergy induction. Furthermore, PD-1 expression was induced within 24 h of the initial Ag exposure. The establishment of anergy was associated with a marked down-regulation of IL-2 from the CD8+ T cells. In fact, IL-2 blockade resulted in anergy even in 2C rag2−/−PD-1−/− T cells. Furthermore, the complementation of the IL-2 signal in 2C rag2−/− PD-1+/+ mice reversed the anergy induction. We propose that CD8+ T cell anergy is induced by a reduction of cell-autonomous IL-2 synthesis, which is caused by the quick expression of PD-1 in response to Ag stimulation and the subsequent stimulation of this receptor by its ligands on surrounding cells.
TRIM28 is a component of heterochromatin complexes whose function in the immune system is unknown. By studying mice with conditional T cell-specific deletion of TRIM28 (CKO mice), we found that TRIM28 was phosphorylated after stimulation via the T cell antigen receptor (TCR) and was involved in the global regulation of CD4(+) T cells. The CKO mice had a spontaneous autoimmune phenotype that was due in part to early lymphopenia associated with a defect in the production of interleukin 2 (IL-2) as well as incomplete cell-cycle progression of their T cells. In addition, CKO T cells showed derepression of the cytokine TGF-β3, which resulted in an altered cytokine balance; this caused the accumulation of autoreactive cells of the T(H)17 subset of helper T cells and of Foxp3(+) T cells. Notably, CKO Foxp3(+) T cells were unable to prevent the autoimmune phenotype in vivo. Our results show critical roles for TRIM28 in both T cell activation and T cell tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.