In this study, we extend the multiscale stochastic volatility model of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254] by incorporating a slow varying factor of volatility. The resulting model can be viewed as a multifactor extension of the Heston model with two additional factors driving the volatility levels. An asymptotic analysis consisting of singular and regular perturbation expansions is developed to obtain an approximation to European option prices. We also find explicit expressions for some essential functions that are available only in integral formulas in the work of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254]. This finding basically leads to considerable reduction in computational time for numerical calculation as well as calibration problems. An accuracy result of the asymptotic approximation is also provided. For numerical illustration, the multifactor Heston model is calibrated to index options on the market, and we find that the resulting implied volatility surfaces fit the market data better than those produced by the multiscale stochastic volatility model of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254], particularly for long‐maturity call options.
Abstract. We study an optimization problem for HARA utility function under a multi-scale Heston's stochastic volatility model. We investigate a practical strategy that do not depend on the incorporated factor which is unobservable in the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.