Vulnerability is a fundamental component of risk and its understanding is important for characterising the reliability of infrastructure assets and systems and for mitigating risks. The vulnerability analysis of infrastructure exposed to natural hazards has become a key area of research due to the critical role that infrastructure plays for society and this topic has been the subject of significant advances from new data and insights following recent disasters. Transport systems, in particular, are highly vulnerable to natural hazards, and the physical damage of transport assets may cause significant disruption and socioeconomic impact. More importantly, infrastructure assets comprise Systems of Assets (SoA), i.e. a combination of interdependent assets exposed not to one, but to multiple hazards, depending on the environment within which these reside. Thus, it is of paramount importance for their reliability and safety to enable fragility analysis of SoA subjected to a sequence of hazards. In this context, and after understanding the absence of a relevant study, the aim of this paper is to review the recent advances on fragility assessment of critical transport infrastructure subject to diverse geotechnical and climatic hazards. The effects of these hazards on the main transport assets are summarised and common damage modes are described. Frequently in practice, individual fragility functions for each transport asset are employed as part of a quantitative risk analysis (QRA) of the infrastructure. A comprehensive review of the available fragility functions is provided for different hazards. Engineering advances in the development of numerical fragility functions for individual assets are discussed including soilstructure interaction, deterioration, and multiple hazard effects. The concept of SoA in diverse ecosystems is introduced, where infrastructure is classified based on (i) the road capacity and speed limits and (ii) the geomorphological and topographical conditions. A methodological framework for the development of numerical fragility functions of SoA under multiple hazards is proposed and demonstrated. The paper concludes by detailing the opportunities for future developments in the fragility analysis of transport SoA under multiple hazards, which is of paramount importance in decision-making processes around adaptation, mitigation, and recovery planning in respect of geotechnical and climatic hazards.
This article presents an integrated approach for the probabilistic systemic risk analysis of a road network considering spatial seismic hazard with correlation of ground motion intensities, vulnerability of the network components, and the effect of interactions within the network, as well as, between roadway components and built environment to the network functionality. The system performance is evaluated at the system level through a global connectivity performance indicator, which depends on both physical damages to its components and induced functionality losses due to interactions with other systems. An object-oriented modeling paradigm is used, where the complex problem of several interacting systems is decomposed in a number of interacting objects, accounting for intra-and interdependencies between and within systems. Each system is specified with its components, solving algorithms, performance indicators and interactions with other systems. The proposed approach is implemented for the analysis of the road network in the city of Thessaloniki (Greece) to demonstrate its applicability. In particular, the risk for the road network in the area is calculated, specifically focusing on the short-term impact of seismic events (just after the earthquake). The potential of road blockages due to collapses of adjacent buildings and overpass bridges is analyzed, trying to individuate possible criticalities related to specific components/subsystems. The application can be extended based on the proposed approach, to account for other interactions such as failure of pipelines beneath the road segments, collapse of adjacent electric poles, or malfunction of lighting and signaling systems due to damage in the electric power network. C 2015 Computer-Aided Civil and Infrastructure Engineering.
The exposure of critical infrastructure to natural and human-induced hazards has severe consequences on world economies and societies. Therefore, resilience assessment of infrastructure assets to extreme events and sequences of diverse hazards is of paramount importance for maintaining their functionality. Yet, the resilience assessment commonly assumes single hazards and ignores alternative approaches and decisions in the restoration strategy. It has now been established that infrastructure owners and operators consider different factors in their restoration strategies depending on the available resources and their priorities, the importance of the asset and the level of damage. Currently, no integrated framework that accounts for the nature and sequence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.