This work provides a systematic review of the literature from January 2003 to April 2014 pertaining to the incidence, pathophysiology, diagnosis, and treatment of osteonecrosis of the jaw (ONJ), and offers recommendations for its management based on multidisciplinary international consensus. ONJ is associated with oncology-dose parenteral antiresorptive therapy of bisphosphonates (BP) and denosumab (Dmab). The incidence of ONJ is greatest in the oncology patient population (1% to 15%), where high doses of these medications are used at frequent intervals. In the osteoporosis patient population, the incidence of ONJ is estimated at 0.001% to 0.01%, marginally higher than the incidence in the general population (<0.001%). New insights into the pathophysiology of ONJ include antiresorptive effects of BPs and Dmab, effects of BPs on gamma delta T-cells and on monocyte and macrophage function, as well as the role of local bacterial infection, inflammation, and necrosis. Advances in imaging include the use of cone beam computerized tomography assessing cortical and cancellous architecture with lower radiation exposure, magnetic resonance imaging, bone scanning, and positron emission tomography, although plain films often suffice. Other risk factors for ONJ include glucocorticoid use, maxillary or mandibular bone surgery, poor oral hygiene, chronic inflammation, diabetes mellitus, illfitting dentures, as well as other drugs, including antiangiogenic agents. Prevention strategies for ONJ include elimination or stabilization of oral disease prior to initiation of antiresorptive agents, as well as maintenance of good oral hygiene. In those patients at high risk for the development of ONJ, including cancer patients receiving high-dose BP or Dmab therapy, consideration should be given to withholding antiresorptive therapy following extensive oral surgery until the surgical site heals with mature mucosal coverage. Management of ONJ is based on the stage of the disease, size of the lesions, and the presence of contributing drug therapy and comorbidity. Conservative therapy includes topical antibiotic oral rinses and systemic antibiotic therapy. Localized surgical debridement is indicated in advanced nonresponsive disease and has been successful. Early data have suggested enhanced osseous wound healing with teriparatide in those without contraindications for its use. Experimental therapy includes bone marrow stem cell intralesional transplantation, low-level laser therapy, local platelet-derived growth factor application, hyperbaric oxygen, and tissue grafting.
Bisphosphonates (BPs) are medications used commonly to treat primary and metastatic bone cancer, as well as osteoporosis. Although BPs improve bone mineral density, reduce fracture risk, and reduce hypercalcemia of malignancy, some patients develop BP-related osteonecrosis of the jaws (BRONJ). This devastating complication is defined as clinically exposed bone in the maxillofacial region for more than 8 weeks. Despite an increasing number of BRONJ cases since first reported, the disease pathophysiology remains largely unknown. Since published studies suggest a significant role for dental disease in the pathophysiology of BRONJ, we developed a BRONJ animal model where aggressive periodontal disease is induced by ligature placement around the crown of the right maxillary first molar in the presence of vehicle (veh) or zoledronic acid (ZA), a potent BP. Ligature placement induced significant alveolar bone loss, which was attenuated by ZA treatment. Osteonecrosis was observed associated with ligature-induced periodontitis in the ZA-treated group. This was seen as sequestration and extensive periosteal alveolar bone formation on micro–computed tomography (μCT) in the ligated site of BP-treated animals. Histologic examination confirmed these findings, seen as necrotic bone with diffuse loss of osteocytes and empty lacunae, rimming of the necrotic bone by squamous epithelium and inflammation, and exposure to the oral cavity. Importantly, the rat lesions were strikingly similar to those of BRONJ patients. Our data suggest that dental disease and potent BP therapy are sufficient for BRONJ development in the rat.
Pluripotent mesenchymal stem cells can undergo lineage-specific differentiation in adult organisms. However, understanding of the factors and mechanisms that drive this differentiation is limited. We show the novel ability of specific oxysterols to regulate lineage-specific differentiation of mesenchymal stem cells into osteogenic cells while inhibiting their adipogenic differentiation. Such effects may have important implications for intervention with osteoporosis.Introduction: Oxysterols are products of cholesterol oxidation and are formed in vivo by a variety of cells including osteoblasts. Novel pro-osteogenic and anti-adipogenic effects of specific oxysterols on pluripotent mesenchymal cells are demonstrated in this report. Aging and osteoporosis are associated with a decrease in the number and activity of osteoblastic cells and a parallel increase in the number of adipocytic cells. Materials and Methods:The M2-10B4 pluripotent marrow stromal cell line, as well as several other mesenchymal cell lines and primary marrow stromal cells, was used to assess the effects of oxysterols. All results were analyzed for statistical significance using ANOVA. Results and Conclusion: Pro-osteogenic and anti-adipogenic effects of specific oxysterols were assessed by the increase in early and late markers of osteogenic differentiation, including alkaline phosphatase activity, osteocalcin mRNA expression and mineralization, and the decrease in markers of adipogenic differentiation including lipoprotein lipase and adipocyte P2 mRNA expression and adipocyte formation. Complete osteogenic differentiation of M2 cells into cells expressing early and late markers of differentiation was achieved only when using combinations of specific oxysterols, whereas inhibition of adipogenesis could be achieved with individual oxysterols. Oxysterol effects were in part mediated by extracellular signal-regulated kinase and enzymes in the arachidonic acid metabolic pathway, i.e., cyclo-oxygenase and phospholipase A 2 . Furthermore, we show that these specific oxysterols act in synergy with bone morphogenetic protein 2 in inducing osteogenic differentiation. These findings suggest that oxysterols may play an important role in the differentiation of mesenchymal stem cells and may have significant, previously unrecognized, importance in stem cell biology and potential therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.