Amyotrophic lateral sclerosis (ALS) is a progressive disease affecting upper and lower motor neurons. Feeding disorders are observed in patients with ALS. The mastication movements and their systemic effects in patients with ALS with feeding disorders remain unclear. Currently, there is no effective treatment for ALS. However, it has been suggested that treating feeding disorders and improving nutritional status may prolong the lives of patients with ALS. Therefore, this study elucidates feeding disorders observed in patients with ALS and future therapeutic agents. We conducted a temporal observation of feeding behavior and mastication movements using an open-closed mouth evaluation artificial intelligence (AI) model in an ALS mouse model. Furthermore, to determine the cause of masticatory rhythm modulation, we conducted electrophysiological analyses of mesencephalic trigeminal neurons (MesV). Here, we observed the modulation of masticatory rhythm with a prolonged open phase in the ALS mouse model from the age of 12 weeks. A decreased body weight was observed simultaneously, indicating a correlation between the prolongation of the open phase and the decrease observed. We found that the percentage of firing MesV was markedly decreased. This study partially clarifies the role of feeding disorders in ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.