Clustering is one of the most active research fields in data mining. Clustering in statistics, pattern recognition, image processing, machine learning, biology, marketing and many other fields have a wide range of applications. DBSCAN is a density-based clustering algorithm. this algorithm clusters data of high density. The traditional DBSCAN clustering algorithm in finding the core object, will use this object as the center core, extends outwards continuously. At this point, the core objects growing, unprocessed objects are retained in memory, which will occupy a lot of memory and I/O overhead, algorithm efficiency is not high. In order to ensure the high efficiency of DBSCAN clustering algorithm, and reduce its memory footprint. In this paper, the original DBSCAN algorithm was improved, and the G-DBSCAN algorithm is proposed. G-DBSCAN algorithm to reduce the number of query object as a starting point, Put the data into the grid, with the center point of the data in the grid to replace all the grid points as the algorithm input. The query object will be drastically reduced, thus improving the efficiency of the algorithm, reduces the memory footprint. The results prove that G-DBSCAN algorithm is feasible and effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.