One hundred and forty-two different actinomycete strains were isolated from rhizosphere soil of Vitis vinifera L. sampled from four Moroccan areas. To evaluate the antifungal effect of the different collected actinomycete isolates, five fungi known to be phytopathogens (Pythium ultimum, Fusarium oxyysporum f. sp. albedinis, Sclerotium rolfsii, Verticillium dahliae and Botrytis cinerea) were used. Results showed that 24 isolates had an in vitro inhibitory effect toward at least 4 of the indicator fungi, but only 9 inhibited all these phytopathogens. These nine isolates were subsequently evaluated individually using in vitro grapevine plantlets for their ability to protect against plant gray mold. We demonstrate here that pre-inoculation of plantlets with these isolates allow them to withstand Botrytis cinerea. Six of these strains were shown to belong to the genus Streptomyces and three to the genus Micromonospora. These findings indicate the potential of developing effective actinomycetes from Moroccan habitats for the biological control of Botrytis cinerea.
Predatory bacteria constitute a heterogeneous group of prokaryotes able to lyse and feed on the cellular constituents of other bacteria in conditions of nutrient scarcity. In this study, we describe the isolation of Actinobacteria predator of other bacteria from the marine water of the Moroccan Atlantic coast. Only 4 Actinobacteria isolates showing strong predation capability against native or multidrug-resistant Gram-positive or Gram-negative bacteria were identified among 142 isolated potential predatory bacteria. These actinobacterial predators were shown to belong to the Streptomyces genus and to inhibit the growth of various native or multidrug-resistant micro-organisms, including Micrococcus luteus, Staphylococcus aureus (native and methicillin-resistant), and Escherichia coli (native and ampicillin-resistant). Even if no clear correlation could be established between the antibacterial activities of the selected predator Actinobacteria and their predatory activity, we cannot exclude that some specific bio-active secondary metabolites were produced in this context and contributed to the killing and lysis of the bacteria. Indeed, the co-cultivation of Actinobacteria with other bacteria is known to lead to the production of compounds that are not produced in monoculture. Furthermore, the production of specific antibiotics is linked to the composition of the growth media that, in our co-culture conditions, exclusively consisted of the components of the prey living cells. Interestingly, our strategy led to the isolation of bacteria with interesting inhibitory activity against methicillin-resistant S. aureus (MRSA) as well as against Gram-negative bacteria.
The emergence and spread of carbapenem-resistant Enterobacteriaceae (CRE) represent a major clinical problem and raise serious health concerns. The present study aimed to investigate and ascertain the occurrence of CRE among hospitalized patients of Mohamed VI University Hospital, Marrakech, Morocco. Biological samples were collected over a one-year period (2018). The bacterial isolates were identified by MALDI-TOF-MS. Antibiotic susceptibility testing was performed using disc diffusion and Etest. The modified Hodge test and combined disc diffusion test were used for phenotypic detection. CRE hydrolyzing enzyme encoding genes: blaOXA-48, blaKPC, blaIMP, blaVIM, and blaNDM were characterized by PCR and DNA sequencing. In total, 131 non-duplicate CRE clinical strains resistant to Ertapenem were isolated out of 1603 initial Enterobacteriaceae. Klebsiella pneumoniae was the most common species (59%), followed by Enterobacter cloacae (24%), E. coli (10%), Citrobacter freundii (3%), Klebsiellaoxycota (2%), Serratia marcescens (1%), and Citrobacter braakii (1%). Of these, 56.49%, 21.37%, 15.27%, 3.38%, and 3.05% were collected from blood, urine, pus, catheters and respiratory samples, respectively. Approximately 85.5% (112/131) of the isolates were carbapenemase producers (40 blaOXA-48, 27 blaNDM, 38 blaOXA-48 + blaNDM and 7 blaVIM). All metallo-β-lactamases isolates were NDM-1 and VIM-1 producers. This is the first documentation of blaOXA-48 genes from C. freundii and C. braakii in Morocco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.