This paper deals with immiscible blends of poly(ethylene terephthalate) obtained by melt blending with polycarbonate. A large survey of the current knowledge in the field of these blends is presented. Resolved and unresolved issues concerning the effect of exchange reactions on the miscibility of the components are addressed. The experimental part of the paper focuses on the rheological behavior of PET/PC blends. Blends containing various polymer ratios were obtained by melt blending with and without transesterification catalysts. Oscillatory shear flow in the melt was used to characterize the rheology of the various samples. A plot of the oscillatory data, similar to the Van Gurp Palmen plot, is used to point out the broadening of the co‐continuity window when in situ compatibilization takes place.magnified image
The article addresses the issue of recycling of poly(ethylene terephtalate) (PET) by melt blending with polycarbonate (PC). PET/PC blends containing various amounts of the immiscible polymers were prepared in a twin-screw extruder. Selected compositions were also prepared in the presence of an Sn-based catalyst to assess the influence of transesterification during melt mixing. The degree of miscibility in the blends was studied using differential scanning calorimetry, scanning electron microscopy, and mechanical testing. PET/PC blends exhibit enhanced tensile properties in comparison to neat components for compositions of PET higher than 50% and these properties are improved by the addition of a transesterification catalyst. The PET/PC blend containing 20 wt% of PC, prepared with stannous octoate, shows the smallest size of the dispersed phase because of transesterification reactions that generate copolymer molecules at the interface between the immiscible polymers. The melting temperature of PET is decreased with the increase of the PC content in blends extruded in the presence of the catalyst. Also, the temperatures of the cold crystallization of PET are higher than those of similar blends without added catalyst. Both features give rise to better molding properties because of a shortening of the cooling time in the range of 50-90 wt% of PET
The influence of the molecular weight of polyethylene on the morphology and mechanical properties of blends of high-density polyethylene (HDPE) dispersed as droplets in a poly(ethylene terephthalate) (PET) matrix at various compositions was investigated. The difference of morphologies can be easily explained by the influence of the molecular weight on the viscosity ratio and therefore, on the critical capillary number. The compatibilizing efficiency of copolymers containing glycidyl methacrylate groups was also addressed in relation to their nature, the protocol for their drying and the molecular weight of the HDPE phase. The increase of adhesion between PET and HDPE was found to have a larger influence on tensile properties than the reduction of interfacial tension. The amount of compatibilizer needed for adhesion improvement depends on the interfacial area that is defined by both the interfacial tension and viscosity ratio of the components. A qualitative relation between the optimum amount of compatibilizer and the critical capillary number can be written.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.