In this paper, for the first time an Improved Particle Swarm Optimization (IPSO) algorithm, is developed to evaluate the 2.5-D basement of sedimentary basin and consequently to simulate its bottom, by using the density contrast that varies parabolically with depth simultaneously. The IPSO method is capable of improving the global search of particles in all of the search fields. Finding the optimum solution is adjusted by an inertia weight and acceleration coefficients. Here, we have examined the ability of the IPSO inversion by the synthetic gravity data due to a sedimentary basin, with and without noise. The calculated depth and gravity of the synthetic model do not differ too much from assumed values due to set limits for model parameters and are always within the range. Also, the mentioned method has been applied for the 2.5-D gravity inverse modelling of a sedimentary basin in Iran. We also have modelled the sedimentary basin in 2-D along seven profiles. Furthermore, using the depth values estimated by IPSO from all profiles, a 3-D model of the sedimentary basin was generated. The obtained maximum depth for this sedimentary basin is 2.62 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.