Interaction between the users and their environment is spontaneous and unavoidable. This interaction can be positive or negative. A good interior space is about considering all the physical, environmental and cognitive elements and harmonizing them to make it a space that feels right, functionally and emotionally. The important element that has to be considered the most in an interior space is the "user". Balancing all these elements is a challenging job and results in a perfect interior space design. This paper intends to bring to light the necessity of designing an optimum interior space, which is a balance of the user's choice and the mandatory standards that ought to be followed for user safety and convenience. There has to be an intervening domain of ergonomics which will guide to bring out a balance between the personal choice of the user and the usual standards followed. It should also provide a step-by-step information, guidance and direction to act to the specifications and standards systematically to adapt an integrated approach of handling all the elements holistically which will indeed result in a good interior space.
Use of nanomaterials in the field of design ergonomics is less explored till date. In the present review, an attempt has been made to extend general awareness among ergonomists/designers about applications of nanomaterials/nanotechnology in the field of design ergonomics and about health implications of nanomaterials during their use.
Purpose
– The purpose of this paper is to highlight state-of-the-art digital human modeling applications in aviation and aerospace industry, generate research interest and promote application of digital human modeling technology among audience of diverse background including researchers, students, trainees, etc. in academia and industry; designers; engineers; and ergonomists associated with aviation and aerospace sectors.
Design/methodology/approach
– Comprehensive literature search was performed and, subsequently, all publications identified were studied thoroughly at least by abstracts. Available information has been segregated under different headings and depicted systematically for easy understanding by readers.
Findings
– Virtual human modeling technology has been used in assessing reach and accessibility in aircraft cockpits, creating accurate posture libraries, performing vision analysis for pilots, determining design modifications to accommodate female users, predicting probable pilot behavior in proposed cockpit design, simulating air flow and heat transfer in fighter plane’s cockpit, assessing comfort of airplane passenger seats, maintenance studies, human spaceflight training, verifying component accessibility, investigating impact of space suit parts and harnesses, etc. Traditional approach for ergonomic investigations (involving costly physical mockups and trials with real humans) can be effectively replaced by evaluations facilitated by digital mockups and digital humans.
Research limitations/implications
– Being a review paper, the present manuscript is purely academic in nature.
Originality/value
– The present paper represents critical review (with up to date references), leading to a comprehensive knowledge body about application of digital human modeling in aviation and aerospace industry. Avenues still to be explored have been identified and future research directions have been given aiming at aviation and aerospace completely human centric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.