Here, the authors explore the potential of multispectral imaging applied to image completion. Snapshot multispectral cameras correspond to breakthrough technologies that are suitable for everyday use. Therefore, they correspond to an interesting alternative to digital cameras. In their experiments, multispectral images are acquired using an ultracompact snapshot camera-recorder that senses 16 different spectral channels in the visible spectrum. Direct exploitation of completion algorithms by extension of the spectral channels exhibits only minimum enhancement. A dedicated method that consists in a prior segmentation of the scene has been developed to address this issue. The segmentation derives from an analysis of the spectral data and is employed to constrain research area of exemplar-based completion algorithms. The full processing chain takes benefit from standard methods that were developed by both hyperspectral imaging and computer vision communities. Results indicate that image completion constrained by spectral presegmentation ensures better consideration of the surrounding materials and simultaneously improves rendering consistency, in particular for completion of flat regions that present no clear gradients and little structure variance. The authors validate their method with a perceptual evaluation based on 20 volunteers. This study shows for the first time the potential of multispectral imaging applied to image completion.
The aim of Diminished Reality (DR) is to remove a target object in a live video stream seamlessly. In our approach, the area of the target object is replaced with new texture that blends with the rest of the image. The result is then propagated to the next frames of the video. One of the important stages of this technique is to update the target region with respect to the illumination change. This is a complex and recurrent problem when the viewpoint changes. We show that the state-of-the-art in DR fails in solving this problem, even under simple scenarios. We then use local illumination models to address this problem. According to these models, the variation in illumination only affects the specular component of the image. In the context of DR, the problem is therefore solved by propagating the specularities in the target area. We list a set of structural properties of specularities which we incorporate in two new models for specularity propagation. Our first model includes the same property as the previous approaches, which is the smoothness of illumination variation, but has a different estimation method based on the Thin-Plate Spline. Our second model incorporates more properties of the specularity's shape on planar surfaces. Experimental results on synthetic and real data show that our strategy substantially improves the rendering quality compared to the state-of-the-art in DR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.