In marine cartilaginous fish, reabsorption of filtered urea by the kidney is essential for retaining a large amount of urea in their body. However, the mechanism for urea reabsorption is poorly understood due to the complexity of the kidney. To address this problem, we focused on elephant fish (Callorhinchus milii) for which a genome database is available, and conducted molecular mapping of membrane transporters along the different segments of the nephron. Basically, the nephron architecture of elephant fish was similar to that described for elasmobranch nephrons, but some unique features were observed. The late distal tubule (LDT), which corresponded to the fourth loop of the nephron, ran straight near the renal corpuscle, while it was convoluted around the tip of the loop. The ascending and descending limbs of the straight portion were closely apposed to each other and were arranged in a countercurrent fashion. The convoluted portion of LDT was tightly packed and enveloped by the larger convolution of the second loop that originated from the same renal corpuscle. In situ hybridization analysis demonstrated that co-localization of Na(+),K(+),2Cl(-) cotransporter 2 and Na(+)/K(+)-ATPase α1 subunit was observed in the early distal tubule and the posterior part of LDT, indicating the existence of two separate diluting segments. The diluting segments most likely facilitate NaCl absorption and thereby water reabsorption to elevate urea concentration in the filtrate, and subsequently contribute to efficient urea reabsorption in the final segment of the nephron, the collecting tubule, where urea transporter-1 was intensely localized.
Vadadustat is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor for the treatment of anemia in patients with chronic kidney disease (CKD). This phase 3, open-label, 24-week single-arm study evaluated the efficacy and safety of vadadustat in 42 Japanese CKD patients with anemia undergoing peritoneal dialysis. Patients received oral vadadustat for 24 weeks, initiated at 300 mg/day and doses were adjusted to achieve the target hemoglobin (Hb) range of 11.0-13.0 g/dL. Least squares mean of average Hb at weeks 20 and 24 was 11.35 g/dL, which was within the target range. The most frequent adverse events were catheter site infections (23.8%), which were not related to vadadustat treatment. Vadadustat was generally well tolerated and effective in controlling Hb levels within the target range, indicating the usefulness of vadadustat for treating anemia in Japanese CKD patients undergoing peritoneal dialysis.
K E Y W O R D Sanemia, chronic kidney disease, hypoxia-inducible factor prolyl hydroxylase inhibitor, peritoneal dialysis, vadadustat
Comprehensive analysis of genes contributing to euryhalinity in the bull shark, Carcharhinus leucas; Na + -Cl − co-transporter is one of the key renal factors upregulated in acclimation to low-salinity environment ABSTRACT Most cartilaginous fishes live principally in seawater (SW) environments, but a limited number of species including the bull shark, Carcharhinus leucas, inhabit both SW and freshwater (FW) environments during their life cycle. Euryhaline elasmobranchs maintain high internal urea and ion levels even in FW environments, but little is known about the osmoregulatory mechanisms that enable them to maintain internal homeostasis in hypoosmotic environments. In the present study, we focused on the kidney because this is the only organ that can excrete excess water from the body in a hypoosmotic environment. We conducted a transfer experiment of bull sharks from SW to FW and performed differential gene expression analysis between the two conditions using RNA-sequencing. A search for genes upregulated in the FW-acclimated bull shark kidney indicated that the expression of the Na + -Cl − cotransporter (NCC; Slc12a3) was 10 times higher in the FW-acclimated sharks compared with that in SW sharks. In the kidney, apically located NCC was observed in the late distal tubule and in the anterior half of the collecting tubule, where basolateral Na + /K + -ATPase was also expressed, implying that these segments contribute to NaCl reabsorption from the filtrate for diluting the urine. This expression pattern was not observed in the houndshark, Triakis scyllium, which had been transferred to 30% SW; this species cannot survive in FW environments. The salinity transfer experiment combined with a comprehensive gene screening approach demonstrates that NCC is a key renal protein that contributes to the remarkable euryhaline ability of the bull shark.
Na(+)/H(+) exchanger 3 (NHE3) provides one of the major Na(+) absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na(+) reabsorption, urine acidification, and intestinal Na(+) absorption in elasmobranchs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.