Cloud computing is new technology that has considerably changed human life at different aspect over the last decade. Especially after the COVID-19 pandemic, almost all life activity shifted into cloud base. Cloud computing is a utility where different hardware and software resources are accessed on pay per user ground base. Most of these resources are available in virtualized form and virtual machine (VM) is one of the main elements of visualization.VM used in data center for distribution of resource and application according to benefactor demand. Cloud data center faces different issue in respect of performance and efficiency for improvement of these issues different approaches are used. Virtual machine play important role for improvement of data center performance therefore different approach are used for improvement of virtual machine efficiency (i-e) load balancing of resource and task. For the improvement of this section different parameter of VM improve like makespan, quality of service, energy, data accuracy and network utilization. Improvement of different parameter in VM directly improve the performance of cloud computing. Therefore, we conducting this review paper that we can discuss about various improvements that took place in VM from 2015 to 20,201. This review paper also contain information about various parameter of cloud computing and final section of paper present the role of machine learning algorithm in VM as well load balancing approach along with the future direction of VM in cloud data center.
<p class="0abstract">Cloud computing is the next generation of technology which provide different service with the rule of pay and gain with the help of internet. These services consist of hardware and software used in different field of life. Due the growth of user in cloud environment the number of access and share system of technology increases which causes different issue and resource allocation system is one of them. In this paper for improvement in resource allocation system in VM a hybrid algorithm used because in some situation VM become underloaded and overloaded in cloud data centre due to lack of proper load balancing technique system. Therefore a hybrid technique used for improvement in VM allocation system. The hybrid technique consist of GWO and ABC algorithm three main section of GWO technique improve first improvment occur at local search section in this section ABC algorithm local search technique used second improvement occur at fitness function along with the energy parameter. The above proposed technique used to improve four main parameter of scheduling which are energy consumption, throughput network stability and average network executation time in resource allocation system in VM for cloud computing. The proposed technique result are compare with ABC algorithm , GWO algorithm, RAA algorithm based on those result the proposed algorithm improve 1.25 % accuracy and efficiency for resource allocation system in VM for cloud computing.</p>
<p class="normal">Cloud computing is an advanced technology which provides services with the help of internet. These services work under the rule of pay and gain. The services consist of hardware and software used in different fields of life. Due to growth of cloud computing the number of users are increased and their demand for better services also increased with the passage of time. Cloud computing faces different issues. One of them is resource scheduling. In this paper a new technique is used for improvement of scheduling in cloud computing. The improvement took place in GWO algorithm. Two main sections of this algorithm are modified, which are local search section and fitness function value. The above proposed technique is used to improve three main parameters of scheduling that are energy consumption, throughput and average network executation time in VM for cloud computing. The techniques results are compared with ABC algorithm and GWO algorithm. The results show that proposed algorithm improves in the three main parameters of scheduling for cloud computing.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.