In pre-colonial and colonial times Cô te d'Ivoire probably hosted one of the largest elephant populations in West Africa, resulting in the country's name Cô te d'Ivoire (in English Ivory Coast) by French settlers. Numbers declined and by the early 90s it was estimated that the total number of both savannah and forest elephants had reached 63 to 360 elephants in the entire country. Here we present updated information on the distribution and conservation status of forest elephant in Cô te d'Ivoire based on multiple sources-dung counts on line transects, records of human-elephant conflict, media reports, sign and interview surveysobtained during the period 2011-2017. We used Pearson correlation to determine the correlation between the presence of forest elephant and site variables (size of the forest, percentage of area converted into plantation, size of the forest left, size of human population inside the PA, poaching index, distance to the nearest road, population density in the Department, level of protection of the PA). To examine the effect of ecological traits on elephant extirpation, we used Principal Components Analysis (PCA) to check for multicollinearity among variables. Based on dung count elephant presence was confirmed in only 4 of the 25 protected areas surveyed. PAs with higher level of protection have higher probability to be home of elephant population. The viability of these populations is uncertain, since they have a small size and are isolated. Aggressive conservation actions including law enforcement for the protection of their remaining habitat and ranger patrolling are needed to protect the remaining forest elephant populations.
Biodiversity conservation planning is highly important in the current context of global change. Biodiversity conservation can be achieved by understanding changes in land use at the landscape scale. Such understanding is needed to reverse the unprecedented pressure on natural resources that has been reported by many studies conducted on biodiversity conservation within the Oti-Keran-Mandouri protected areas. Land cover maps reflecting different dates (1987, 2000, and 2013) and depicting different management systems, with overall accuracy ranging from 73% to 79%, were analyzed to understand the processes that lead to habitat degradation within these protected areas. The nature of change, within a given land cover class, was determined by comparing land cover maps on different dates using a decision tree algorithm that compares the number of patches, their areas, and their perimeters at different time periods (T1 and T2). Specifically, two time-periods were considered for this analysis: 1987–2000 and 2000–2013. Croplands and settlements increased at an average of 108.13% and 5.45%, respectively, from 1987 to 2000. From 2000 to 2013, croplands gained from all other land categories and continued to increase at a rate of 11.77% per year, whereas forests and savannas decreased at an annual average rate by 5.79% and 2.32%, respectively. The dominant processes of habitat change from 1987 to 2000 were the creation of forests, dissection of savannas, attrition of wetlands, and creation of croplands. Meanwhile, from 2000 to 2013, there was attrition of forests, as well as attrition of savannas, dissection of wetlands, and aggregation of croplands. In general, from 1987 to 2013, natural habitats regressed and were replaced by croplands; forests, savannas, and wetlands decreased at an average annual percentage 5.74%, 3.94%, and 2.02%, respectively, whereas croplands increased at an average annual rate of 285.39% of their own area. Aggregation, attrition, dissection, and creation were the main habitat change processes identified for the overall period from 1987 to 2013. There was habitat loss in forests and savannas and habitat fragmentation in wetland due to attrition and dissection, respectively. Identifying and understanding habitat change processes would enable the taking of appropriate biodiversity conservation actions.
Oti-Keran-Mandouri (OKM) is part of the elephant historical range and one of the priority corridors proposed for elephant conservation in West Africa. However, its potentialities to be a functional corridor are yet to be evaluated in a context of increasing anthropogenic pressure. This study aims at assessing habitat biophysical patterns and fragmentation level. A multicriteria evaluation using fuzzy logic was performed to model elephant habitat suitability and vegetation sampling conducted in 123 plots to describe the habitat. In each plot, the physical parameters of woody plants species were recorded. Biodiversity indices, dendrometric parameters, and diameter structure were computed for each habitat type and compared using Jaccard Index and Kruskal-Wallis test. Habitat fragmentation was assessed using the hypsometric method. Apart from a core area located in the south-east, the remnant good habitat is in small patches. Four habitats were distinguished based on their level of degradation. There is a steady increase in habitat diversity from degraded habitat (Habitat 1) to primary habitat (Habitat 4) with the Shannon index increasing from 0.83 to 1.43 bit. In all the habitats, trees are evenly distributed with an evenness higher than 0.7. Dendrometric parameters are significantly different from one habitat to another (P-value < 0.05) apart from the mean diameter and the average regeneration rate. The suitable habitat for elephant constitutes only 31.5% of the area of OKM. The overall habitat fragmentation is 84.74%. Regeneration rates make an eventual restoration possible but further assessment of the socio-ecological system is needed.
Biodiversity conservation planning is highly important in the current context of global change. Biodiversity conservation can be achieved by understanding changes in land use at the landscape scale. Such understanding is needed to reverse the unprecedented pressure on natural resources that has been reported by many studies conducted on biodiversity conservation within the Oti-Keran-Mandouri protected areas. Land cover maps reflecting different dates (1987, 2000, and 2013) and depicting different management systems, with overall accuracy ranging from 73% to 79%, were analyzed to understand the processes that lead to habitat degradation within these protected areas. The nature of change, within a given land cover class, was determined by comparing land cover maps on different dates using a decision tree algorithm that compares the number of patches, their areas, and their perimeters at different time periods (T1 and T2). Specifically, two time-periods were considered for this analysis: 1987–2000 and 2000–2013. Croplands and settlements increased at an average of 108.13% and 5.45%, respectively, from 1987 to 2000. From 2000 to 2013, croplands gained from all other land categories and continued to increase at a rate of 11.77% per year, whereas forests and savannas decreased at an annual average rate by 5.79% and 2.32%, respectively. The dominant processes of habitat change from 1987 to 2000 were the creation of forests, dissection of savannas, attrition of wetlands, and creation of croplands. Meanwhile, from 2000 to 2013, there was attrition of forests, as well as attrition of savannas, dissection of wetlands, and aggregation of croplands. In general, from 1987 to 2013, natural habitats regressed and were replaced by croplands; forests, savannas, and wetlands decreased at an average annual percentage 5.74%, 3.94%, and 2.02%, respectively, whereas croplands increased at an average annual rate of 285.39% of their own area. Aggregation, attrition, dissection, and creation were the main habitat change processes identified for the overall period from 1987 to 2013. There was habitat loss in forests and savannas and habitat fragmentation in wetland due to attrition and dissection, respectively. Identifying and understanding habitat change processes would enable the taking of appropriate biodiversity conservation actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.