Tuber characteristics and nutrient composition of three morphotypes of Cyperus esculentus tubers and tuber oils were determined. The mean value for length and width of the tuber and one thousand dried tuber weights ranged from 0.98 to 1.31 cm, 0.90 to 1.19 cm, and 598 to 1044 g, respectively. Tubers displayed high level of starch (30.54–33.21 g 100 g−1), lipid (24.91–28.94 g 100 g−1), and sucrose (17.98–20.39 g 100 g−1). The yellow tubers had significantly higher content in lipid compared to black ones. Levels of ascorbic acid, tocopherol, and β-carotene of the three morphotypes differed significantly. Yellow ones (morphotypes 1 and 2) were the richest in tocopherol and the poorest in β-carotene. Saturated fatty acid content of morphotype 2 was significantly lower than that of morphotypes 1 and 3. Morphotype 3 had the significantly lowest PUFA content compared to morphotypes 1 and 2. Morphotype 1 was found to be richer in Ca, Cu, and Mn contents. Al, Mg, P, S, and Si were most abundant in morphotype 2. Morphotype 3 had the highest content of Cl, K, and Zn.
Mutagenesis is used for creating new genetic variability in cultivar improvement. Optimal mutagenic treatment is required for effective mutation induction in crop species. Therefore, radiosensitivity of cowpea accessions to gamma irradiation was investigated. Seeds of eight cowpea accessions were irradiated with 60 Co gamma radiation doses of 100, 200, 300, 400 and 500 Gy. The seeds were sown in pots to evaluate the treatment effects on seed germination (SG), seedling survival (SS) and growth habits of M1 generation. Data were analyzed using descriptive statistics. Low rates of SG (10%-45%) were recorded at higher doses (500-400 Gy) in Ife Brown (IB) and its derivatives, whereas high SG rates (74%-94%) were observed in IT90K-284-2 across all treatments. Percentage SS was inversely related to gamma dosage. A wide range of LD50 for SG (329-1054 Gy) and SS (149-620 Gy) were observed across the cowpea accessions. Low LD50 scores for SG (329-516 Gy) and SS (149-357 Gy) were observed among cowpea with rough seed coat, whereas cowpea with smooth seed coat recorded higher LD50 for SG (521 and 1054 Gy) and SS (449 and 620 Gy). Seed germination LD50 and SS LD50 were highly correlated with mean coat thickness (0.899 and 0.937) than mean seed weight (0.621 and 0.678). Gamma irradiation of cowpea seed at low dosage (100 Gy) increased the vigor of M1 seedlings with respect to primary leaf area, terminal leaflet area, seedling height and plant height at six weeks. Doses of 200 Gy and above resulted in a progressive reduction in vigor of plant and seed setting of cowpea. Radio-sensitivity varied with cowpea genotype and was associated with seed testa texture, thickness and seed weight. Low gamma * Corresponding author. F. O. Olasupo et al. 340 irradiation treatment (100 Gy) may be used to enhance seedling vigor, vegetative growth and yield of cowpea at M1 generation.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.