Engineering design problems often involve nonlinear criterion functions, including inequality and equality constraints, and a mixture of discrete and continuous design variables. Optimization approaches entail substantial challenges when solving such an all-inclusive design problem. In this paper, a modification of the Particle Swarm Optimization (PSO) algorithm is presented, which can adequately address system constraints while dealing with mixed-discrete variables. Continuous search (particle motion), as in conventional PSO, is implemented as the primary search strategy; subsequently, the discrete variables are updated using a deterministic nearest-feasible-vertex criterion. This approach is expected to alleviate the undesirable difference in the rates of evolution of discrete and continuous variables. The premature stagnation of candidate solutions (particles) due to loss of diversity is known to be one of the primary drawbacks of the basic PSO dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.