In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Macroautophagy (hereafter referred to as autophagy) has emerged as a key tumor suppressor pathway. During this process, the cytosolic constituents are sequestered into autophagosomes, which subsequently fuse with lysosomes to become autolysosomes where their contents are finally degraded. Although a reduced autophagy has been shown in human tumors or in response to oncogenes and carcinogens, the underlying mechanism(s) remain(s) unknown. Here, we show that widely used carcinogen Lindane promotes vacuolation of Sertoli cells. By electron and immunofluorescent microscopy analyses, we showed that these structures are acid autolysosomes, containing cellular debris, and labeled by LC3, Rab7, and LAMP1, markers of autophagosomes, late endosomes, and lysosomes, respectively. Such Lindane-induced vacuolation results from significant delay in autophagy degradation, in relation with a decline of the lysosomal activity of aryl sulfatase A. At molecular level, we show that this defect in autolysosomal maturation is independent of mammalian target of rapamycin and p38 inhibitions. Rather, the activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is required for Lindane to disrupt the autophagic pathway. Most importantly, we provide the first evidence that sustained activation of ERK pathway is sufficient to commit cell to autophagic vacuolation. Taken together, these findings strongly support that the aberrant sustained activation of ERK by the carcinogen Lindane disrupts the maturation of autophagosomes into functional autolysosomes. Our findings therefore suggest the possibility that high constitutive ERK activity found in all cancers may provide a malignant advantage by impeding the tumor suppressive function of autophagy. (Cancer Res 2006; 66(13): 6861-70)
Plasma CRP levels are not predictive of the diagnosis of NASH in severely obese patients. The liver but also the adipose tissue can produce CRP, a process which could be dependent on IL6. Therefore, both tissues might contribute to the elevated plasma CRP levels found in obesity. In addition, the large amount of body fat may well produce an important part of the circulating CRP, further limiting its clinical usefulness in the evaluation of NASH in severely obese patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.