Uteroplacental development is a crucial step facilitating conceptus growth. Normal placental development comprises extensive placental angiogenesis to support fetoplacental transport, meeting the metabolic demands of the fetus. Compromised pregnancies due to maternal stressors such as over or undernutrition, maternal age or parity, altered body mass index, or genetic background result in altered vascular development of the placenta. This negatively affects placental growth and placental function and ultimately results in poor pregnancy outcomes. Nonetheless, the placenta acts as a sensor to the maternal stressors and undergoes modifications, which some have termed placental programming, to ensure healthy development of the conceptus. Sex steroid hormones such as estradiol-17β and progesterone, chemokines such as chemokine ligand 12, and angiogenic/vasoactive factors such as vascular endothelial growth factors, placental growth factor, angiopoietins, and nitric oxide regulate uteroplacental development and hence are often used as therapeutic targets to rescue compromised pregnancies. Interestingly, the presence of sex steroid receptors has been identified in the fetal membranes (developing fetal placenta). Environmental steroid mimetics known as endocrine disrupting compounds disrupt conceptus development and lead to transgenerational impairments by epigenetic modification of placental gene expression, which is another area deserving intense research efforts. This review attempts to summarize current knowledge concerning intrinsic and extrinsic factors affecting selected reproductive functions with the emphasis on placental development.
The aim of this study was to evaluate the pattern of protein expression of the steroid receptor isoforms of nuclear progesterone receptors (PGR) A and B, and estrogen receptors (ESR1 and 2) in utero-placental compartments during early pregnancy. Utero-placental tissues were collected from days 14-30 (n = 4 ewes/day), and uterine tissues were collected from non-pregnant ewes on day 10 after estrus (n = 4). Cross sections of formalin-fixed and paraffin embedded tissues were immunofluorescently stained to detect PGRAB, PGRB, ESR1 and ESR2, followed by image generation of entire cross-sections of uterine and utero-placental tissues, confocal imaging of individual uterine and utero-placental compartments, and image and statistical analyses. PGRAB, PGRB, ESR1 and ESR2 were detected in several compartments of uterine and utero-placental tissues. Quantitative image analysis of staining intensity demonstrated that compared to non-pregnant controls 1) expression of PGRAB and PGRB was less in luminal epithelium and endometrial glands from day 14-16 till 30; 2) PGRAB expression tended to be greater in endometrial and myometrial blood vessels on days 28 and/or 30; 3) PGRB expression in myometrum was lower on days 16 and 28; 4) ESR1 in endometrial stroma was lower in all days of pregnancy; 5) ESR2 expression was similar in all compartments and not affected by pregnancy stage; and 6) in FM, expression of steroid receptors was similar. Thus, we have demonstrated spatial and temporal expression of nuclear PGR and ESR isoforms in utero-placental compartments during early pregnancy.
Sex steroid hormones are major regulators of uterine and placental growth and functions, as well as many other biological processes. To examine the mRNA expression of nuclear estrogen (ESR1 and 2) and progesterone (PGRAB and B) receptors in different compartments of the uterus and placenta, tissues were collected in experiment 1, on days 16, 20 and 28 after natural mating (NAT) and on day 10 after estrus (non-pregnant controls [NP]); and in experiment 2, on day 22 of NAT, and pregnancies established after transfer of embryos generated through mating of FSH-treated ewes (NAT-ET), in vitro fertilization (IVF), or in vitro activation (IVA; parthenotes). In experiment 1, ESR1 expression in endometrial stroma (ES), endometrial glands (EG) and myometrial blood vessels (MBV), ESR2 in endometrial blood vessels (EBV), PGRAB in ES, and PGRB in ES, EG and MBV was greater in pregnant than NP depending on day of pregnancy. Day of pregnancy affected expression of ESR1 in MBV, ESR2 in EBV and MBV, and PGRAB in ES. In experiment 2, ESR1, PGRAB and PGRB in EG, but not in other compartments, was greater in NAT-ET than NAT, and PGRB was greater in NAT-ET than the IVF. These data demonstrated that the ESR and PGR expression was different in pregnant vs. NP ewes in selected compartments, and was affected by pregnancy stage or embryo origin in selected utero-placental compartments. Thus, sex steroid hormone mRNA expression is differentially regulated in a spatio-temporal manner in uterus and placenta, and is affected by application of assisted reproductive technology in sheep.
BackgroundHaematopoietic stem cells undergo mobilization from bone marrow to blood in response to physiological stimuli such as ischemia and tissue injury. The aim of study was to determine the kinetics of circulating CD34+ and CD133+CD34+ progenitor cells in response to 75 g glucose load in subjects with normal and impaired glucose metabolism.MethodsAsian Indian male subjects (n = 50) with no prior history of glucose imbalance were subjected to 2 hour oral glucose tolerance test (OGTT). 24 subjects had normal glucose tolerance (NGT), 17 subjects had impaired glucose tolerance (IGT) and 9 had impaired fasting glucose (IFG). The IGT and IFG subjects were grouped together as pre-diabetes group (n = 26). Progenitor cell counts in peripheral circulation at fasting and 2 hour post glucose challenge were measured using direct two-color flow cytometry.ResultsThe pre-diabetes group was more insulin resistant (p < 0.0001) as measured by homeostasis assessment model (HOMA-IR) compared to NGT group. A 2.5-fold increase in CD34+ cells (p = 0.003) and CD133+CD34+ (p = 0.019) cells was seen 2 hours post glucose challenge in the NGT group. This increase for both the cell types was attenuated in subjects with IGT. CD34+ cell counts in response to glucose challenge inversely correlated with neutrophil counts (ρ = -0.330, p = 0.019), while post load counts of CD133+CD34+ cells inversely correlated with serum creatinine (ρ = -0.312, p = 0.023).ConclusionThere is a 2.5-fold increase in the circulating levels of haematopoietic stem cells in response to glucose challenge in healthy Asian Indian male subjects which is attenuated in subjects with pre-diabetes.
Oral glucose-induced increase in circulating numbers of CD133(+) and CD133(+)CD34(+) cells and endothelial differentiation potential of peripheral blood-derived EPCs is attenuated in insulin resistant amenorrhoeic subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.