We present an end-to-end deep network model that performs meeting diarization from single-channel audio recordings. End-to-end diarization models have the advantage of handling speaker overlap and enabling straightforward handling of discriminative training, unlike traditional clustering-based diarization methods. The proposed system is designed to handle meetings with unknown numbers of speakers, using variable-number permutation-invariant crossentropy based loss functions. We introduce several components that appear to help with diarization performance, including a local convolutional network followed by a global self-attention module, multitask transfer learning using a speaker identification component, and a sequential approach where the model is refined with a second stage. These are trained and validated on simulated meeting data based on LibriSpeech and LibriTTS datasets; final evaluations are done using LibriCSS, which consists of simulated meetings recorded using real acoustics via loudspeaker playback. The proposed model performs better than previously proposed end-to-end diarization models on these data.
This work proposes the use of clean speech vocoder parameters as the target for a neural network performing speech enhancement. These parameters have been designed for text-tospeech synthesis so that they both produce high-quality resyntheses and also are straightforward to model with neural networks, but have not been utilized in speech enhancement until now. In comparison to a matched text-to-speech system that is given the ground truth transcripts of the noisy speech, our model is able to produce more natural speech because it has access to the true prosody in the noisy speech. In comparison to two denoising systems, the oracle Wiener mask and a DNNbased mask predictor, our model equals the oracle Wiener mask in subjective quality and intelligibility and surpasses the realistic system. A vocoder-based upper bound shows that there is still room for improvement with this approach beyond the oracle Wiener mask. We test speaker-dependence with two speakers and show that a single model can be used for multiple speakers.
Noise suppression systems generally produce output speech with copromised quality. We propose to utilize the high quality speech generation capability of neural vocoders for noise suppression. We use a neural network to predict clean mel-spectrogram features from noisy speech and then compare two neural vocoders, WaveNet and WaveGlow, for synthesizing clean speech from the predicted mel spectrogram. Both WaveNet and WaveGlow achieve better subjective and objective quality scores than the source separation model Chimera++. Further, WaveNet and WaveGlow also achieve significantly better subjective quality ratings than the oracle Wiener mask. Moreover, we observe that between WaveNet and WaveGlow, WaveNet achieves the best subjective quality scores, although at the cost of much slower waveform generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.