The Polyakov−Nambu−Jona-Lasinio model has been quite successful in describing various qualitative features of observables for strongly interacting matter, that are measurable in heavy-ion collision experiments. The question still remains on the quantitative uncertainties in the model results. Such an estimation is possible only by contrasting these results with those obtained from first principles using the lattice QCD framework. Recently a variety of lattice QCD data were reported in the realistic continuum limit. Here we make a first attempt at reparametrizing the model so as to reproduce these lattice data. We find excellent quantitative agreement for the equation of state. Certain discrepancies in the charge and strangeness susceptibilities as well as baryon-charge correlation still remain. We discuss their causes and outline possible directions to remove them.
Finite size consideration of matter significantly affects transport coefficients like shear viscosity, bulk viscosity, electrical conductivity, which we have investigated here in the framework of the Polyakov-Nambu-Jona-Lasinio model. Owing to the basic quantum mechanics, a non-zero lower momentum cut-off is implemented in momentum integrations, used in the expressions of constituent quark masses and transport coefficients. When the system size decreases, the values of these transport coefficients are enhanced in low temperature range. At high temperature domain, shear viscosity and electrical conductivity become independent of system sizes. Whereas, bulk viscosity, which is associated with scale violating quantities of the system, faces some non-trivial size dependence in this regime. In the phenomenological direction, our microscopic estimations can also be linked with the macroscopic outcome, based on dissipative hydrodynamical simulation.
The equation of state and fluctuations of conserved charges in a strongly interacting medium under equilibrium conditions form the baseline upon which various possible scenarios in relativistic heavyion collision experiments are built. Many of these quantities have been obtained in the lattice QCD framework with reliable continuum extrapolations. Recently the Polyakov−Nambu−Jona-Lasinio model has been reparametrized to some extent to reproduce quantitatively the lattice QCD equation of state at vanishing chemical potentials. The agreement was precise except at low temperatures, possibly due to inadequate representation of the hadronic degrees of freedom in the model. This disagreement was also observed for some of the fluctuation and correlations considered. Here we address this issue by introducing the effects of hadrons through the Hadron Resonance Gas model. The total thermodynamic potential is now a weighted sum of the thermodynamic potential of the Polyakov−Nambu−Jona-Lasinio model and that of the Hadron Resonance Gas model. We find that the equation of state and the fluctuations and correlations obtained in this hybrid model agrees satisfactorily with the lattice QCD data in the low temperature regime.
In this article, there are 18 sections discussing various current topics in the field of relativistic heavy-ion collisions and related phenomena, which will serve as a snapshot of the current state of the art. Section 1 reviews experimental results of some recent light-flavored particle production data from ALICE collaboration. Other sections are mostly theoretical in nature. Very strong but transient magnetic field created in relativistic heavy-ion collisions could have important observational consequences. This has generated a lot of theoretical activity in the last decade. Sections 2, 7, 9, 10 and 11 deal with the effects of the magnetic field on the properties of the QCD matter. More specifically, Sec. 2 discusses mass of [Formula: see text] in the linear sigma model coupled to quarks at zero temperature. In Sec. 7, one-loop calculation of the anisotropic pressure are discussed in the presence of strong magnetic field. In Sec. 9, chiral transition and chiral susceptibility in the NJL model is discussed for a chirally imbalanced plasma in the presence of magnetic field using a Wigner function approach. Sections 10 discusses electrical conductivity and Hall conductivity of hot and dense hadron gas within Boltzmann approach and Sec. 11 deals with electrical resistivity of quark matter in presence of magnetic field. There are several unanswered questions about the QCD phase diagram. Sections 3, 11 and 18 discuss various aspects of the QCD phase diagram and phase transitions. Recent years have witnessed interesting developments in foundational aspects of hydrodynamics and their application to heavy-ion collisions. Sections 12 and 15–17 of this article probe some aspects of this exciting field. In Sec. 12, analytical solutions of viscous Landau hydrodynamics in 1+1D are discussed. Section 15 deals with derivation of hydrodynamics from effective covariant kinetic theory. Sections 16 and 17 discuss hydrodynamics with spin and analytical hydrodynamic attractors, respectively. Transport coefficients together with their temperature- and density-dependence are essential inputs in hydrodynamical calculations. Sections 5, 8 and 14 deal with calculation/estimation of various transport coefficients (shear and bulk viscosity, thermal conductivity, relaxation times, etc.) of quark matter and hadronic matter. Sections 4, 6 and 13 deal with interesting new developments in the field. Section 4 discusses color dipole gluon distribution function at small transverse momentum in the form of a series of Bells polynomials. Section 6 discusses the properties of Higgs boson in the quark–gluon plasma using Higgs–quark interaction and calculate the Higgs decays into quark and anti-quark, which shows a dominant on-shell contribution in the bottom-quark channel. Section 13 discusses modification of coalescence model to incorporate viscous corrections and application of this model to study hadron production from a dissipative quark–gluon plasma.
Thermodynamic properties of strongly interacting matter are investigated using the Polyakov loop enhanced Nambu-Jona-Lasinio model along with some modifications to include the hadrons. Various observables are shown to have a close agreement with the numerical data of QCD on lattice. The advantage of the present scheme over a similar study using a switching function is that here no extra parameters are to be fitted. As a result the present scheme can be easily extended for finite chemical potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.