In this article, we propose a stochastic search based method, namely genetic algorithm in conjunction with density functional theory to evaluate structures of water-halide microclusters, with the halide ion being Cl(-), Br(-), and I(-). Once the structures are established, we evaluate the infrared spectroscopic modes, vertical detachment energies and natural population analysis based charges. We compare our results with available experimental and theoretical results.
In this article, we explore the efficiency of using a coupled genetic algorithm (GA) and density functional theory (DFT) based strategy to evaluate probable structures of (H(2) O)(n) F(-) micro-clusters, with n = 1 - 6. We use the stochastic optimization technique of GA to arrive at structures of the cluster systems and once the structures are obtained, do a DFT calculation with the optimized coordinates from the GA calculation as input to get the infra-red spectrum of all the systems. The results of our work closely resembles the pure quantum chemical results obtained by Baik et al. (J Chem Phys 1999, 110, 9116-9127).
In this article, we propose a stochastic search-based method, namely genetic algorithm (GA) and simulated annealing (SA) in conjunction with density functional theory (DFT) to evaluate global and local minimum structures of (TiO2)n clusters with n = 1-12. Once the structures are established, we evaluate the infrared spectroscopic modes, cluster formation energy, vertical excitation energy, vertical ionization potential, vertical electron affinity, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps, and so forth. We show that an initial determination of structure using stochastic techniques (GA/SA), also popularly known as natural algorithms as their working principle mimics certain natural processes, and following it up with density functional calculations lead to high-quality structures for these systems. We have shown that the clusters tend to form three-dimensional networks. We compare our results with the available experimental and theoretical results. The results obtained from SA/GA-DFT technique agree well with available theoretical and experimental data of literature.
In this paper, we explore the use of stochastic optimizer, namely simulated annealing (SA) followed by density function theory (DFT)-based strategy for evaluating the structure and infrared spectroscopy of (H 2 O) n OH − clusters where n = 1-6. We have shown that the use of SA can generate both global and local structures of these cluster systems. We also perform a DFT calculation, using the optimized coordinate obtained from SA as input and extract the IR spectra of these systems. Finally, we compare our results with available theoretical and experimental data. There is a close correspondence between the computed frequencies from our theoretical study and available experimental data. To further aid in understanding the details of the hydrogen bonds formed, we performed atoms in molecules calculation on all the global minimum structures to evaluate relevant electron densities and critical points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.