Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affected cells. Here, CNTs play a major role because phenomena such as EPR, allow CNTs to distinguish normal cells from affected ones, the Holy Grail in cancer therapy. Considerable work has been done on CNTs as drug delivery systems over the last two decades. However, concerns over certain issues such as biocompatibility and toxicity have been raised and warrant extensive research in this field.Uniterms: Carbon nanotubes/properties. Carbon nanotubes/use/drugs delivery. Single-Walled Carbon Nanotube. Multiwalled Carbon Nanotube. Anticancer drugs/delivery. Cancer/therapy. Drugs/delivery.Os nanotubos de carbono foram descobertos em 1991 e suas propriedades físico-químicas únicas demonstradas, despertando interesse em sua aplicação em vários campos, incluindo a entrega liberação de fármacos. As propriedades únicas dos nanotubos de carbono, tais como a facilidade de captação pela célula, carga alta de fármaco, ablação térmica, entre outras, tornaram-nos úteis para terapia de câncer, uma das doenças mais difíceis dos tempos modernos, pois sua terapia envolve a distinção entre as células normais saudáveis e as afetadas pela doença. Os nanotubos de carbono têm um papel importante nessa área porque fenômenos como EPR permitem que estes possam distinguir as células normais das afetadas, que é o Santo Graal na terapia do câncer. Trabalho considerável tem sido feito ao longo das duas últimas década com nanotubos de carbono, como sistemas de liberação de fármacos. No entanto, preocupações sobre algumas questões, como biocompatibilidade e toxicidade, surgiram ao longo do tempo, demandando extensas pesquisa nesse campo. Unitermos: Nanotubos de carbono/propriedades. Nanotubos de carbono/uso/liberação de fármacos. Nanotubo de carbono de parede única. Nanotubo de parede múltipla. Fármacos anticancer/liberação. Cancer/tratamento. Fármacos/liberação.
Background: Renal artery–inferior vena cava (IVC) fistula is usually caused by penetrating injury to the back. However, it is a very rarely reported entity with only 20 cases reported in the literature. They may present acutely with hemodynamic instability or chronically as congestive heart failure. A thorough examination and adequate imaging are required to avoid missing such injuries. Case Presentation: A 28-year-old gentleman presented after sustaining stab injury to the back. The stab had penetrated the renal artery and IVC, leading to arteriovenous fistula. He was managed surgically, as he went into hemorrhagic shock, with a successful outcome. The case is also unique as an accessory renal artery was also involved in the fistula. Conclusion: Early identification and management of renal artery–IVC fistula is important to ensure a successful outcome. Such fistulas can be managed by either endovascular approach or surgical approach. The decision of approach depends on the level of expertise available and hemodynamic status of the patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.