Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of implants for controlled drug delivery. Polymers used in colloidal drug carrier systems, consisting of small particles, show great advantage in drug delivery systems because of optimized drug loading and releasing property. Polymeric nano particulate systems are available in wide variety and have established chemistry. Non toxic, biodegradable and biocompatible polymers are available. Some nano particulate polymeric systems possess ability to cross blood brain barrier. They offer protection against chemical degradation. Smart polymers are responsive to atmospheric stimulus like change in temperature; pressure, pH etc. thus are extremely beneficial for targeted drug delivery. Some polymeric systems conjugated with antibodies/specific biomarkers help in detecting molecular targets specifically in cancers. Surface coating with thiolated PEG, Silica-PEG improves water solubility and photo stability. Surface modification of drug carriers e.g. attachment with PEG or dextran to the lipid bilayer increases their blood circulation time. Polymer drug conjugates such as Zoladex, Lupron Depot, On Caspar PEG intron are used in treatment of prostate cancer and lymphoblastic leukemia. Polymeric Drug Delivery systems are being utilized for controlled drug delivery assuring patient compliance.
This article reports on reversible manipulation of room temperature ferromagnetism (RTFM) in nondoped bulk CeO2. The magnetization measurements establish that paramagnetic CeO2 is driven to a ferromagnetic state, without change in structure, when vacuum annealed at 600 °C. The Ce ions transform from 4+ to 3+ state, accompanied by evolution of oxygen vacancies (VO) during the RTFM transition, as determined by x-ray photoemission. The F+ centers (the electrons in singly occupied oxygen vacancies) play key role in the exchange mechanism. The transition shows complete reversibility where the RTFM is removed by removing the vacancies through re-heating the vacuum-annealed CeO2 in air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.