Software-Defined Networking (SDN) is an emerging paradigm, which evolved in recent years to address the weaknesses in traditional networks. The significant feature of the SDN, which is achieved by disassociating the control plane from the data plane, facilitates network management and allows the network to be efficiently programmable. However, the new architecture can be susceptible to several attacks that lead to resource exhaustion and prevent the SDN controller from supporting legitimate users. One of these attacks, which nowadays is growing significantly, is the Distributed Denial of Service (DDoS) attack. DDoS attack has a high impact on crashing the network resources, making the target servers unable to support the valid users. The current methods deploy Machine Learning (ML) for intrusion detection against DDoS attacks in the SDN network using the standard datasets. However, these methods suffer several drawbacks, and the used datasets do not contain the most recent attack patterns -hence, lacking in attack diversity.In this paper, we propose DDoSNet, an intrusion detection system against DDoS attacks in SDN environments. Our method is based on Deep Learning (DL) technique, combining the Recurrent Neural Network (RNN) with autoencoder. We evaluate our model using the newly released dataset CICDDoS2019, which contains a comprehensive variety of DDoS attacks and addresses the gaps of the existing current datasets. We obtain a significant improvement in attack detection, as compared to other benchmarking methods. Hence, our model provides great confidence in securing these networks.
Abstract-Sky/cloud images captured by ground-based cameras (a.k.a. whole sky imagers) are increasingly used nowadays because of their applications in a number of fields, including climate modeling, weather prediction, renewable energy generation, and satellite communications. Due to the wide variety of cloud types and lighting conditions in such images, accurate and robust segmentation of clouds is challenging. In this paper, we present a supervised segmentation framework for ground-based sky/cloud images based on a systematic analysis of different color spaces and components, using partial least squares (PLS) regression. Unlike other state-of-the-art methods, our proposed approach is entirely learning-based and does not require any manuallydefined parameters. In addition, we release the Singapore Whole Sky IMaging SEGmentation Database (SWIMSEG), a large database of annotated sky/cloud images, to the research community.
Cloud imaging using ground-based whole sky imagers is essential for a fine-grained understanding of the effects of cloud formations, which can be useful in many applications. Some such imagers are available commercially, but their cost is relatively high, and their flexibility is limited. Therefore, we built a new daytime Whole Sky Imager (WSI) called Wide Angle High-Resolution Sky Imaging System. The strengths of our new design are its simplicity, low manufacturing cost and high resolution. Our imager captures the entire hemisphere in a single high-resolution picture via a digital camera using a fish-eye lens. The camera was modified to capture light across the visible as well as the near-infrared spectral ranges. This paper describes the design of the device as well as the geometric and radiometric calibration of the imaging system.
Sky/cloud imaging using ground-based Whole Sky Imagers (WSI) is a cost-effective means to understanding cloud cover and weather patterns. The accurate segmentation of clouds in these images is a challenging task, as clouds do not possess any clear structure. Several algorithms using different color models have been proposed in the literature. This paper presents a systematic approach for the selection of color spaces and components for optimal segmentation of sky/cloud images. Using mainly principal component analysis (PCA) and fuzzy clustering for evaluation, we identify the most suitable color components for this task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.