Early and fast detection of disease is essential for the fight against COVID-19 pandemic. Researchers have focused on developing robust and cost-effective detection methods using Deep learning based chest X-Ray image processing. However, such prediction models are often not well suited to address the challenge of highly imabalanced datasets. The current work is an attempt to address the issue by utilizing unsupervised Variational Auto Encoders (VAEs). Firstly, chest X-Ray images are converted to a latent space by learning the most important features using VAEs. Secondly, a wide range of well established data resampling techniques are used to balance the preexisting imbalanced classes in the latent vector form of the dataset. Finally, the modified dataset in the new feature space is used to train well known classification models to classify chest X-Ray images into three different classes viz., ”COVID-19”, ”Pneumonia”, and ”Normal”. In order to capture the quality of resampling methods, 10-folds cross validation technique is applied on the dataset. Extensive experimental analysis have been carried out and results so obtained indicate significant improvement in COVID-19 detection using the proposed VAE based method. Furthermore, the ingenuity of the results have been established by performing Wilcoxon rank test with 95% level of significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.