Transition-metal dichalcogenides (TMDs) exists mainly in two polymorphs, namely, 1T (metallic) and 2H (semiconducting). To tailor the characteristics and practical utility of TMDs for different applications, functionalization is essential. In our earlier studies, we have shown that functionalized 1T and 2H MoS2 exhibit exceptionally high antibacterial activity. The functionalization and related biological applications of other 1T (chemically exfoliated) TMDs were reported, but regarding other 2H TMDs, the functionalization and antibacterial activity are not explored yet. Hence, here we prepared functionalized 2H TMDs such as WS2, WSe2, and MoSe2 other than MoS2 by using a positively charged thiolate surfactant ligand. Further, functionalized 2H TMDs were utilized for antibacterial activity against Gram-positive and Gram-negative bacteria for a comparative antibacterial analysis. Interestingly, we found disparity in activity among the functionalized 2H TMDs, that is, MoS2 shows higher activity than WS2 followed by MoSe2 and WSe2. The intracellular reactive oxygen species measurement was found to be in the order MoS2 > WS2 > MoSe2 > WSe2, which is solely responsible for variation in the activity of functionalized TMDs. These results indicate that the easy functionalization of all types TMDs by using thiol ligand and importance of core material should be considered while designing functionalized material for specific applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.