An automated quality control (QC) system is essential to ensure streamlined head computed tomography (CT) scan interpretations that do not affect subsequent image analysis. Such a system is advantageous compared to current human QC protocols, which are subjective and time-consuming. In this work, we aim to develop a deep learning-based framework to classify a scan to be of usable or unusable quality. Supervised deep learning models have been highly effective in classification tasks, but they are highly complex and require large, annotated data for effective training. Additional challenges with QC datasets include -1) class-imbalance -usable cases far exceed the unusable ones and 2) weak-labels -scan level labels may not match slice level labels. The proposed framework utilizes these weak labels to augment a standard anomaly detection technique. Specifically, we proposed a hybrid model that consists of a variational autoencoder (VAE) and a Siamese Neural Network (SNN). While the VAE is trained to learn how usable scans appear and reconstruct an input scan, the SNN compares how similar this input scan is to its reconstruction and flags the ones that are less similar than a threshold. The proposed method is more suited to capture the differences in non-linear feature structure between the two classes of data than typical anomaly detection methods that depend on intensity-based metrics like root mean square error (RMSE). Comparison with state-of-the-art anomaly detection methods using multiple classification metrics establishes superiority of the proposed framework in flagging inferior quality scans for review by radiologists, thus reducing their workload and establishing a reliable and consistent dataflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.