Low cost embedded devices with computational power have the potential to revolutionise detection and management of many diseases. This is especially true in the case of conditions like sleep apnea, which require continuous long term monitoring. In this paper, we give details of a portable, cost-effective and customisable Electrocardiograph(ECG) Signal analyser for real time sleep apnea detection. We have developed a data analysis pipeline using which we can identify sleep apnea using a single lead ECG signal. Our method combines steps including dataset extraction, segmentation, signal cleaning, filtration and finally apnea detection using Support Vector Machines (SVM). We analysed our proposed implementation through a complete run on the MIT-Physionet dataset. Due to the low computational complexity of our proposed method, we find that it is well suited for deployment on embedded devices such as the Raspberry Pi.
All organs in the human body are susceptible to cancer, and we now have a growing store of images of lesions in different parts of the body. This, along with the acknowledged ability of neural-network methods to analyse image data, would suggest that accurate models for lesions can now be constructed by a deep neural network. However an important difficulty arises from the lack of annotated images from various parts of the body. Our proposed approach to address the issue of scarce training data for a target organ is to apply a form of transfer learning: that is, to adapt a model constructed for one organ to another for which there are minimal or no annotations. After consultation with medical specialists, we note that there are several discriminating visual features between malignant and benign lesions that occur consistently across organs. Therefore, in principle, these features boost the case for transfer learning on lesion images across organs. However, this has never been previously investigated. In this paper, we investigate whether lesion knowledge can be transferred across organs. Specifically, as a case study,we examine the transfer of a lesion model from the brain to lungs and lungs to the brain. We evaluate the efficacy of transfer of a brain-lesion model to the lung, and the transfer of a lung-lesion model to the brain by comparing against a model constructed: (a) without model-transfer(i.e.random weights); and (b) using model-transfer from a lesion-agnostic dataset (ImageNet). In all cases, our lesion models perform substantially better. These results point to the potential utility of transferring lesion-knowledge across organs other than those considered here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.