Immune evasion and metabolic reprogramming are hallmarks of cancer progression often associated with a poor prognosis and frequently present significant challenges for cancer therapies. Recent studies have highlighted the dynamic interaction between immunosuppression and the dysregulation of energy metabolism in modulating the tumor microenvironment to promote cancer aggressiveness. However, a pan-cancer association among these two hallmarks, and a potent common driver for them—epithelial-mesenchymal transition (EMT)—remains to be done. This meta-analysis across 184 publicly available transcriptomic datasets as well as The Cancer Genome Atlas (TCGA) data reveals that an enhanced PD-L1 activity signature along with other immune checkpoint markers correlate positively with a partial EMT and an elevated glycolysis signature but a reduced OXPHOS signature in many carcinomas. These trends were also recapitulated in single-cell, RNA-seq, time-course EMT induction data across cell lines. Furthermore, across multiple cancer types, concurrent enrichment of glycolysis and PD-L1 results in worse outcomes in terms of overall survival as compared to enrichment for only PD-L1 activity or expression. These results highlight potential functional synergy among these interconnected axes of cellular plasticity in enabling metastasis and multi-drug resistance in cancer.
Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial, mesenchymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the process of epithelial-mesenchymal transition (EMT) and its associated transcription factors are well-characterised, the transcription factors that promote mesenchymal-epithelial transition (MET) and stabilise hybrid E/M phenotypes are less well understood. Here, we analyse multiple publicly-available transcriptomic datasets at bulk and single-cell level and pinpoint ELF3 as a factor that is strongly associated with an epithelial phenotype and is inhibited during EMT. Using mechanism-based mathematical modelling, we also show that ELF3 inhibits the progression of EMT, suggesting ELF3 may be able to counteract EMT induction, including in the presence of EMT-inducing factors, such as WT1. Our model predicts that the MET induction capacity of ELF3 is stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels correlates with worse patient survival in a subset of solid tumor types, suggesting cell-of-origin or lineage specificity in the prognostic capacity of ELF3.
Phenotypic plasticity is a hallmark of cancer metastasis. Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are two proteins reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner, in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two separate 'teams' of players - while BACH1 belonged to the one that drove pro-EMT, stem-like and therapy-resistant cell-states, RKIP is a member of a team that enables pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and concomitant upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network underlie the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, as well as with patient survival data.
Immune evasion and metabolic reprogramming are hallmarks of cancer progression often associated with a poor prognosis and frequently present significant challenge for cancer therapies. Recent studies have emphasized on the dynamic interaction between immunosuppression and the dysregulation of energy metabolism in modulating the tumor microenvironment to promote cancer aggressiveness. However, a pan-cancer association among these two hallmarks, and a potent common driver for them – Epithelial-Mesenchymal Transition (EMT) – remains to be done. Here, our meta-analysis across 184 publicly available transcriptomic datasets as well as The Cancer Genome Atlas (TCGA) data reveals that an enhanced PD-L1 activity signature along with other immune checkpoint markers correlate positively with a partial EMT and elevated glycolysis signature but a reduced OXPHOS signature in many carcinomas. These trends were also recapitulated in single-cell RNA-seq time-course EMT induction data across cell lines. Furthermore, across multiple cancer types, concurrent enrichment of glycolysis and PD-L1 results in worse outcomes in terms of overall survival as compared to enrichment for only PD-L1 activity or expression. Our results highlight potential functional synergy among these interconnected axes of cellular plasticity in enabling metastasis and/or multi-drug resistance in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.