This paper deals with the problem of the synchronization of uncertain modified Colpitts oscillators. Considering the effect of external disturbances on the system parameters and nonlinear control inputs, a robust controller based on Lyapunov theory is designed for the output synchronization between a slave system and a master system in order to ensure the synchronization of uncertain modified Colpitts oscillator systems. This approach was chosen not only to guarantee a stable synchronization but also to reduce the effect of external perturbation. Nonadaptive feedback synchronization with only one controller for the system is investigated. Numerical simulations are performed to confirm the efficiency of the proposed control scheme.
A method of estimation of all parameters of a class of nonlinear uncertain dynamical systems is considered, based on the modified projective synchronization (MPS). The case of modified Colpitts oscillators is investigated. Through a suitable transformation of the dynamical system, sufficient conditions for achieving synchronization are derived based on Lyapunov stability theory. Global stability and asymptotic robust synchronization of the considered system are investigated. The proposed approach offers a systematic design procedure for robust adaptive synchronization of a large class of chaotic systems. The combined effect of both an additive white Gaussian noise (AWGN) and an artificial perturbation is numerically investigated. Results of numerical simulations confirm the effectiveness of the proposed control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.